Answer:
80ml
Explanation:
you have your initial concentration to be 0.25 mole on your final volume to be 250 ml and your final concentration to be 0.8 0.08 molar you don't have your initial volume sotify your initial volume you use the expression see 1 * 21 equals see two times between you make when when the subject then 1 equals to 2 x 2/3 one you know substitute your values into it to get being one that's your original volume to be at the latest or 80 ml
The correct answer is B(OH)3 <AI(OH)3 < In(OH)3.
The metallic character of the group 1 elements first increases from Boron to Aluminium, then decreases from Aluminium to Thallium because of high ionization Enthalpy. Also, the larger size of the ion, the lesser is the ionization of Enthalpy.
Basic nature of the hydroxides of group 13 increases on moving down the group as the electro-positive character of elements increases.
Therefore, the correct order of increasing aqueous basicity is as follows:
B(OH)3 <AI(OH)3 < In(OH)3
What is the basic nature of group 13?
The metallic charecter of the elements affects their fundamental characteristics. The basicity rises as the metallic character does, and vice versa. Therefore, as we move lower in any given group, the atomic radius of the elements increases. Higher radii indicate that it would become increasingly challenging for the nucleus to rule over the electrons in the valency shell. Consequently, there will be a greater inclination for electron release. As a result, the metallic properties will improve, increasing the basicity of the oxides. Therefore, it follows that the basicity of the oxides would rise as we go down in a group.
To learn more about hydroxides refer the link:
brainly.com/question/10134219
#SPJ4
Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
Eazy, it’s called density
I’m only in 8th grade science you know
M(Ag)=12.5 g
Nₐ=6.022*10²³ mol⁻¹
n(Ag)=m(Ag)/M(Ag)
N=n(Ag)*Nₐ
N=Nₐm(Ag)/M(Ag)
N=6.022*10²³mol⁻¹*12.5g/107.868g/mol=6.97*10²²
A. 6.97 × 10²² atoms