1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pishuonlain [190]
3 years ago
14

What are the initial questions that a systems analyst must answer to build an initial prototype of the system output.

Engineering
1 answer:
Luden [163]3 years ago
3 0
Fjdidndjdudbcjdndn the sue Sufi
You might be interested in
Electrical circuits must be locked-out/tagged-out before electricians work on any equipment. Is this true or false?
dybincka [34]

Answer:

true

Explanation:

Equipment that are "locked-out/tagged-out" <em>prevent the electrician from being electrocuted</em> or attaining a serious injury in relation to it. Locking out an equipment prevents it from releasing its energy because such energy can be <em>hazardous</em> to the electrician. There are instances when the equipment accidentally starts up, thus, it is essential that the equipment's source of energy is<em> isolated.</em>

8 0
3 years ago
Water flows with a velocity of 3 m/s in a rectangular channel 3 m wide at a depth of 3 m. What is the change in depth and in wat
strojnjashka [21]

Answer: new depth will be 3.462m and the water elevation will be 0.462m.

The maximum contraction will be achieved in width 0<w<3

Explanation:detailed calculation and explanation is shown in the image below

8 0
3 years ago
Find the mass if the force is 18 N and the acceleration is 2 m/s2
Nana76 [90]

Explanation:

f = ma

m = f/a

= 18N / 2m/s2

= 9kg

5 0
3 years ago
Read 2 more answers
The density of a certain type of steel is 8.1 g/cm3. What is the mass of a 100 cm3 chunk of this steel
irina1246 [14]

Answer:

  810 g

Explanation:

Mass is the product of density and volume:

  m = ρV

  m = (8.1 g/cm³)(100 cm³) = 810 g

The mass of the chunk is 810 grams.

4 0
2 years ago
Determine the angular acceleration of the uniform disk if (a) the rotational inertia of the disk is ignored and (b) the inertia
lukranit [14]

Answer:

α = 7.848 rad/s^2  ... Without disk inertia

α = 6.278 rad/s^2  .... With disk inertia

Explanation:

Given:-

- The mass of the disk, M = 5 kg

- The right hanging mass, mb = 4 kg

- The left hanging mass, ma = 6 kg

- The radius of the disk, r = 0.25 m

Find:-

Determine the angular acceleration of the uniform disk without and with considering the inertia of disk

Solution:-

- Assuming the inertia of the disk is negligible. The two masses ( A & B )  are hung over the disk in a pulley system. The disk is supported by a fixed support with hinge at the center of the disk.

- We will make a Free body diagram for each end of the rope/string ties to the masses A and B.

- The tension in the left and right string is considered to be ( T ).

- Apply newton's second law of motion for mass A and mass B.

                      ma*g - T = ma*a

                      T - mb*g = mb*a

Where,

* The tangential linear acceleration ( a ) with which the system of two masses assumed to be particles move with combined constant acceleration.

- g: The gravitational acceleration constant = 9.81 m/s^2

- Sum the two equations for both masses A and B:

                      g* ( ma - mb ) = ( ma + mb )*a

                      a =  g* ( ma - mb ) / ( ma + mb )

                      a = 9.81* ( 6 - 4 ) / ( 6 + 4 ) = 9.81 * ( 2 / 10 )

                      a = 1.962 m/s^2  

- The rope/string moves with linear acceleration of ( a ) which rotates the disk counter-clockwise in the direction of massive object A.

- The linear acceleration always acts tangent to the disk at a distance radius ( r ).

- For no slip conditions, the linear acceleration can be equated to tangential acceleration ( at ). The correlation between linear-rotational kinematics is given below :

                     a = at = 1.962 m/s^2

                     at = r*α      

Where,

           α: The angular acceleration of the object ( disk )

                    α = at / r

                    α = 1.962 / 0.25

                    α = 7.848 rad/s^2                                

- Take moments about the pivot O of the disk. Apply rotational dynamics conditions:

             

                Sum of moments ∑M = Iα

                 ( Ta - Tb )*r = Iα

- The moment about the pivots are due to masses A and B.

 

               Ta: The force in string due to mass A

               Tb: The force in string due to mass B

                I: The moment of inertia of disk = 0.5*M*r^2

                   ( ma*a - mb*a )*r = 0.5*M*r^2*α

                   α = ( ma*a - mb*a ) / ( 0.5*M*r )

                   α = ( 6*1.962 - 4*1.962 ) / ( 0.5*5*0.25 )

                   α = ( 3.924 ) / ( 0.625 )

                   α = 6.278 rad/s^2

6 0
3 years ago
Other questions:
  • the ____ method is the safest turning technique to use as it does not expose your hands to the airbags deployment area
    15·1 answer
  • Steam undergoes an isentropic compression in an insulated piston–cylinder assembly from an initial state where T1 5 1208C, p1 5
    15·1 answer
  • Complex poles cmd zeros. Sketch the asymptotes of the Bode plot magnitude and phase for each of the listed open-loop mmsfer fuoc
    10·1 answer
  • A mass of 8000 kg of slightly enriched uranium (2% U-235, 98% U-238) is exposed for 30 days in a reactor operating at (6.18) hea
    5·1 answer
  • Which career related to architecture deals with the planning of entire cities and focuses on designing and arranging buildings,
    9·2 answers
  • Advances in vehicle manufacturing technology have decreased the need for:
    10·1 answer
  • The point of contact of two pitch circles of mating gears is called?
    10·1 answer
  • A bronze bushing 60 mm in outer diameter and 40 mm in inner diameter is to be pressed into a hollow steel cylinder of 120-mm out
    8·1 answer
  • What Are 2 Properties electromagnets have that permanent magnets do not?
    8·2 answers
  • Principals of Construction intro
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!