Answer:
15.8
0.0944
Explanation:
L = 1.5
B = 1.0
Speed of water = 15cm
Temperature = 20⁰C
At 20⁰C
Specific weight = 9790
Kinematic viscosity v = 1.00x10^-4m²/s
Dynamic viscosity u = 1.00x10^-3
Density p = 998kg/m²
Reynolds number
= 0.15x1.5/1.00x10^-4
= 225000
S = 5
5x1.5/225000^1/2
= 0.0158
= 15.8mm
Resistance on one side of plate
F = 0.664x1x1.0x10^-3x0.15x225000^1/2
= 0.04724N
Total resistance
= 2N
= 2x0.04724
= 0.0944N
Answer:
(a) the velocity ratio of the machine (V.R) = 1
(b) The mechanical advantage of the machine (M.A) = 0.833
(c) The efficiency of the machine (E) = 83.3 %
Explanation:
Given;
load lifted by the pulley, L = 400 N
effort applied in lifting the, E = 480 N
distance moved by the effort, d = 5 m
(a) the velocity ratio of the machine (V.R);
since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.
V.R = distance moved by effort / distance moved by the load
V.R = 5/5 = 1
(b) The mechanical advantage of the machine (M.A);
M.A = L/E
M.A = 400 / 480
M.A = 0.833
(c) The efficiency of the machine (E);

Answer:
8.24μm
Explanation:
The theory of brittle fracture was used to solve this problem.
And if you follow through with the attachment made a the subject of the formula
Such that,
a = 2x(69x10⁹)x0.3/pi(40x10⁶)²
= 4.14x10¹⁰/5.024x10¹⁵
= 8.24x10^-06
= 8.24μm
This is the the maximum length of the surface flaw
Yes that is correct good job ❤️
Answer:

Explanation:
Let's write the equation of the production rate for the assembly machine :

Where
is the production rate for the assembly machine.
Where
is the ideal cycle time
Where n is the number of stations.
Where m is the number stations that get jam when the defect occurs.
Where p is the defect rate at each station.
And where
is the average downtime per breakdown
We are looking for the hourly production rate ⇒
⇒
⇒

⇒


m = 1.0 in the equation.