1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
4 years ago
7

A 6-pack of canned drinks is to be cooled from 23°C to 3°C. The mass of each canned drink is 0.355 kg. The drinks can be treated

as water, and the energy stored in the aluminum can itself is negligible. The amount of heat transfer from the six canned drinks is _____ kJ.
Engineering
2 answers:
Vesna [10]4 years ago
8 0

Answer:

178 kJ

Explanation:

Assuming no heat transfer out of the cooling device, and if we can neglect the energy stored in the aluminum can, the energy transferred by the canned drinks, would be equal to the change in the internal energy of the canned drinks, as follows:

ΔU = -Q = -c*m*ΔT (1)

where c= specific heat of water = 4180 J/kg*ºC

           m= total mass = 6*0.355 Kg = 2.13 kg

           ΔT = difference between final and initial temperatures = 20ºC

Replacing by these values in (1), we can solve for Q as follows:

Q = 4180 J/kg*ºC * 2.13 kg * -20 ºC = -178 kJ

So, the amount of heat transfer from the six canned drinks is 178 kJ.

fenix001 [56]4 years ago
4 0
<h2>Answer:</h2>

-178.92 kJ

<h2>Explanation:</h2>

The amount or quantity (Q) of heat transferred during a chemical process such as cooling is the product of the mass (m) of the substance involved, the specific heat capacity (c) of the substance and the change in temperature (ΔT) of the substance. i.e

Q = m x c x Δ T   ----------------------(i)

From the question;

m = total mass of the canned drinks = 6 x 0.355kg = 2.13kg

ΔT = final temperature - initial temperature = 3°C - 23°C = -20°C

<em>Known constant;</em>

c = specific heat capacity of water = 4200J/kg°C

<em>Substitute all these values into equation (i) as follows;</em>

Q = 2.13 x 4200 x (-20)

Q = -178920 J

<em>Divide the result by 1000 to convert it to kJ as follows;</em>

Q = (-178920 / 1000) kJ

Q = -178.92 kJ

Therefore, the quantity of heat transferred from the six canned drinks is -178.92 kJ

Note;

The -ve sign shows that the heat transferred is actually the heat lost in cooling the drinks from 23°C to 3°C

You might be interested in
Air is contained in a vertical piston–cylinder assembly such that the piston is in static equilibrium. The atmosphere exerts a p
oee [108]

Answer:

a) 24 kg

b) 32 kg

Explanation:

The gauge pressure is of the gas is equal to the weight of the piston divided by its area:

p = P / A

p = m * g / (π/4 * d^2)

Rearranging

p * (π/4 * d^2) = m * g

m = p * (π/4 * d^2) / g

m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg

After the weight is added the gauge pressure is 2.8kPa

The mass of piston plus addded weight is

m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg

56 - 24 = 32 kg

The mass of the added weight is 32 kg.

5 0
3 years ago
Line.
Veronika [31]

Air supplied to a pneumatic system is supplied through the C. Actuator

Explanation

Pneumatic systems are like hydraulic systems, it is just that these systems uses compressed air rather than hydraulic fluid.  Pneumatic systems are used widely across the industries. these pneumatic systems needs a constant supply of compressed air to operate. This is provided by an air compressor. The compressor sucks in air at a very high rate from the environment and stores it in a pressurized tank. the Air is supplied thereafter with the help of a actuator valve that is a more sophisticated form of a valve.

From the above statement it is clear that Air supplied to a pneumatic system is supplied through the  Actuator

7 0
4 years ago
Suppose there are 76 packets entering a queue at the same time. Each packet is of size 5 MiB. The link transmission rate is 2.1
tia_tia [17]

Answer:

938.7 milliseconds

Explanation:

Since the transmission rate is in bits, we will need to convert the packet size to Bits.

1 bytes = 8 bits

1 MiB = 2^20 bytes = 8 × 2^20 bits

5 MiB = 5 × 8 × 2^20 bits.

The formula for queueing delay of <em>n-th</em> packet is :  (n - 1) × L/R

where L :  packet size = 5 × 8 × 2^20 bits, n: packet number = 48 and R : transmission rate =  2.1 Gbps = 2.1 × 10^9 bits per second.

Therefore queueing delay for 48th packet = ( (48-1) ×5 × 8 × 2^20)/2.1 × 10^9

queueing delay for 48th packet = (47 ×40× 2^20)/2.1 × 10^9

queueing delay for 48th packet = 0.938725181 seconds

queueing delay for 48th packet = 938.725181 milliseconds = 938.7 milliseconds

4 0
3 years ago
What is 4 principles of experimental design
Mrrafil [7]

Answer:

manipulation, control , random assignment, and random selection

Explanation:

7 0
2 years ago
Read 2 more answers
Name some technical skills that are suitable for school leavers .​
Natalka [10]

Answer:

Welding, carpentry, masonry, construction worker, barber

Explanation:

7 0
3 years ago
Other questions:
  • Three return steam lines in a chemical processing plan enter a collection tank operating at a steady state at 1 bar. Steam enter
    11·1 answer
  • 2. In the above figure, what type of cylinder arrangement is shown in the figure above?
    9·1 answer
  • Danny enjoys studying transportation networks and systems. Which field of engineering should he pursue?
    11·1 answer
  • What type of intersection is this?
    8·1 answer
  • Hi plz delete this question i had to edit it cuz it was wrong question
    5·1 answer
  • Which is the required type of fire extinguisher for standard naval vessels
    9·1 answer
  • How much thermal energy is needed to raise the temperature of 15kg gold from 45⁰ C up to 80⁰ C​
    10·1 answer
  • Which statement is true about the future of space travel?
    15·1 answer
  • A torque T 5 3 kN ? m is applied to the solid bronze cylinder shown. Determine (a) the maximum shearing stress, (b) the shethe 1
    10·1 answer
  • QUICK ASAP!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!