Answer:
The answer is: +7
Explanation:
Oxidation state or oxidation number of an element is the hypothetical charge on an element that forms completely ionic bonds. The oxidation number represents the number of electrons lost or gained by that element.
Perchlorate ion is a molecule with a chemical formula: ClO₄⁻
The oxidation state of oxygen in ClO₄⁻ = -2,
the total charge on the ClO₄⁻ molecule = -1,
let the oxidation state of chlorine be x
<u><em>As the sum of oxidation states of all elements in a molecule is equal to the total charge on the molecule.</em></u>
⇒ oxidation state of chlorine + oxidation state of oxygen × 4 = total charge on the molecule
⇒ x + (-2) × 4 = -1
⇒ x + (-8) = -1
⇒ x = -1 + 8 = +7
⇒<u> </u><u>x = +7</u>
<u>Therefore, the oxidation state of chlorine in the perchlorate ion (ClO₄⁻): x = +7</u>
It's only a small difference (103 degrees versus 104 degrees in water),
and I believe the usual rationalization is that since F is more
electronegative than H, the electrons in the O-F bond spend more time
away from the O (and close to the F) than the electrons in the O-H bond.
That shifts the effective center of the repulsive force between the
bonding pairs away from the O, and hence away from each other. So the
repulsion between the bonding pairs is slightly less, while the
repulsion between the lone pairs on the O is the same -- the result is
the angle between the bonds is a little less.
Hope this helps!
Answer: Option (b) is the correct answer.
Explanation:
In material bonding, there occurs Vander waal foces between the molecules in which their is either an induced or permanent dipole moment that attract molecules towards each other.
And, due to these forces the molecules are held together.
On the other hand, in a ionic bond there will always be transfer of electrons from one atom to another. This is because on atom which loses its valence electrons acquires a positive charge and another atom which gains the electrons acquires a negative charge.
Hence, these opposite charges strongly gets attracted towards each other forming a strong bond.
Whereas in a covalent bond, there will be sharing of electrons between the combining atoms.
In a metallic bond, there occurs a sea of electrons which is uniformly distributed throughout the solid substance or material.
Thus, we can conclude that the statement, Van der Waals bonds are formed by Van der Waals forces in which molecules or atoms have either an induced or permanent dipole moment to attract each other, about material bonding is correct.
Answer: The equilibrium concentration of hydrogen gas is 0.0269 M
Explanation:
The chemical reaction follows the equation:

At t = 0 0.044M 0.044M 0.177M
At
(0.044-x)M (0.044-x)M (0.177+x)M
The expression for
for the given reaction follows:
![K_c=\frac{[HI]^2}{[H_2]\times [I_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5Ctimes%20%5BI_2%5D%7D)
We are given:

Putting values in above equation, we get:


Hence, the equilibrium concentration of hydrogen gas is (0.044-x) M =(0.044-0.0171) M= 0.0269 M