For this case we must find the solution of the following expression:

If we isolate a term and we equate to zero, we have:

Subtracting 7 on both sides of the equation we have:

Thus, the solution of the expression is given by:

ANswer:

Answer:
8:30 PM
Step-by-step explanation:
Let's say that x is minutes since 6:20 PM, and y is position in miles.
Since Jonathan drives at a constant rate, the position vs time graph is linear. Two points on the line are (0, 75) and (20, 85). The slope of the line is:
m = Δy / Δx
m = (85 − 75) / (20 − 0)
m = ½
So the equation of the line is:
y = ½ x + 75
We want to find x when y is 140.
140 = ½ x + 75
65 = ½ x
x = 130
So 130 minutes after 6:20 PM is when Jonathan's position will be 140 miles. 130 minutes is 2 hours and 10 minutes. So the time will be 8:30 PM.
Answer:
-2
Step-by-step explanation:
Answer:
1) B) 10
2) B) 9
Step-by-step explanation:
1) 10x+15=115
10x=100
x=10
2) 12x+17=125
12x=108
x=9
Answer:
Option D RX=4 units
Step-by-step explanation:
we know that
<em>In the right triangle RTS</em>
The cosine of angle TRS is equal to
cos(TRS)=RT/RS
substitute
cos(TRS)=6/9 -----> equation A
<em>In the right triangle RTX</em>
The cosine of angle TRX is equal to
cos(TRX)=RX/RT
substitute
cos(TRX)=RX/6 -----> equation B
∠TRS=∠TRX -----> is the same angle
Match equation A and equation B
6/9=RX/6
RX=6*6/9=4 units