Answer:
More sweet and cute with the little ones on the surface and a little more
Answer:
Molar heat of solution of KBr is 20.0kJ/mol
Explanation:
Molar heat of solution is defined as the energy released (negative) or absorbed (Positive) per mole of solute being dissolved in solvent.
The dissolution of KBr is:
KBr → K⁺ + Br⁻
In the calorimeter, the temperature decreases 0.370K, that means the solution absorbes energy in this process. The energy is:
q = 1.36kJK⁻¹ × 0.370K
q = 0.5032kJ
Moles of KBr in 3.00g are:
3.00g × (1mol / 119g) = 0.0252moles
Thus, molar heat of solution of KBr is:
0.5032kJ / 0.0252moles = <em>20.0kJ/mol</em>
Answer:

Explanation:
Since we are given the mass, specific heat, and change in temperature, we should use this formula for heat:

The substance's mass is 450.0 grams, the specific heat is 1.264 J/g°C, and the change in temperature is 7.1 °C.

Substitute the values into the formula.

Multiply the first 2 values together. The grams will cancel out.

Multiply again. This time, the degrees Celsius cancel out.

<u>4038.48 Joules</u> of heat energy are released.
Answer:
im trynna find it out to mamasss
Explanation:
Answer: "exothermic" .
______________________________________________