<u>Given:</u>
Diameter of a red blood cell = 0.000008
<u>To determine:</u>
The scientific notation corresponding to the given number
<u>Explanation:</u>
Scientific notation is a concise way of representing a very large or small number. It is written in two parts:
Given Number = Digits * Power of 10
In this case we have:
0.000008 = 8.0 * 10⁻⁶
Answer:
nearer to the north pole
Explanation:
because there is more water, which is basically gone everywhere else on Mars except for the south pole which has less water than the north pole
B. curiosity and i know because i had the exact question
Answer:
The value of the Michaelis–Menten constant is 0.0111 mM.
Explanation:
Michaelis–Menten 's equation:
![v_o=V_{max}\times \frac{[S]}{(K_m+[S])}=k_{cat}[E_o]\times \frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=v_o%3DV_%7Bmax%7D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D%3Dk_%7Bcat%7D%5BE_o%5D%5Ctimes%20%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)
![V_{max}=k_{cat}[E_o]](https://tex.z-dn.net/?f=V_%7Bmax%7D%3Dk_%7Bcat%7D%5BE_o%5D)
Where:
= rate of formation of products
[S] = Concatenation of substrate
= Michaelis constant
= Maximum rate achieved
= Catalytic rate of the system
= Initial concentration of enzyme
On substituting all the given values
We have :

[S] = 0.10 mM
![\frac{v_o}{V_{max}}=\frac{[S]}{(K_m+[S])}](https://tex.z-dn.net/?f=%5Cfrac%7Bv_o%7D%7BV_%7Bmax%7D%7D%3D%5Cfrac%7B%5BS%5D%7D%7B%28K_m%2B%5BS%5D%29%7D)


The value of the Michaelis–Menten constant is 0.0111 mM.