Heyyy i just need a brainliest please? :) :0 :D sksk
The answer is 60.3% magnesium, 39.7% oxygen.
Solution:
The chemical equation for the reaction is 2 Mg + O2 → 2 MgO.
Since magnesium reacts completely with oxygen, it is the limiting reactant in the reaction. Hence, we can use the number of moles of magnesium to get the mass of MgO produced:
moles of magnesium = 14.7g / 24.305g mol-1
= 0.6048 mol
mass of MgO = 0.6048mol Mg(2 mol MgO/2mol Mg)(40.3044g MgO/1 mol MgO)
= 24.376g MgO
We can now solve for the percentage of magnesium:
% Mg = (14.7g Mg / 24.376g MgO)*100% = 60.3%
We also use the number of moles of magnesium to get the mass of oxygen consumed in the reaction:
mass of O2 = 0.6048 mol Mg (1mol O2 / 2mol Mg) (31.998g / 1mol O2)
= 9.676g
The percentage of oxygen is therefore
% O2 = (9.676g O2 / 24.376g MgO)*100%
= 39.7%
Notice that we can just subtract the magnesium's percentage from 100% to get
% O2 = 100% - 60.3% = 39.7%
Answer:
NaCl: ionic, HF: hydrogen bond, HCl: dipole dipole , F2: dispersion force
Explanation:
complete question is:
The four major attractive forces between particles are ionic bonds, dipole-dipole attractions, hydrogen bonds, and dispersion forces. Consider the compounds below, and classify each by its predominant attractive or intermolecular force among atoms or molecules of the same type.Identify each of the following ( NaCl, HF, HCl, F2) as Ionic, H Bonding, Dipole or Dispersion.
Answer: The standard enthalpy of formation of is -252.1 kJ/mol.
Explanation:
The balanced chemical reaction is,
The expression for enthalpy change is,
Putting the values we get :
Thus standard enthalpy of formation of is -252.1 kJ/mol.