When the work is being done, it is likely that there is an energy being enforced and when the energy is being enforced, it is likely that the energy present is being transferred in order for the work to be able to be able to be exterted upon
YYe the answer is mechanical
Answer: 64.6 mmHg
Explanation:
Given that:
Volume of gas V = 3.47L
(since 1 liter = 1dm3
3.47L = 3.47dm3)
Temperature T = 85.0°C
Convert Celsius to Kelvin
(85.0°C + 273 = 358K)
Pressure P = ?
Number of moles of gas N = 0.100 mole
Note that Molar gas constant R is a constant with a value of 0.0082 ATM dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
p x 3.47dm3 = 0.10 x (0.0082 atm dm3 K-1 mol-1 x 358K)
p x 3.47dm3 = 0.29 atm dm3
p = (0.29 atm dm3 / 3.47 dm3)
p = 0.085 atm
Recall that pressure of the gas is required in mm hg, so convert 0.085 atm to mm Hg
If 1 atm = 760 mm Hg
0.085atm = 0.085 x 760
= 64.6 mm Hg
Thus, the pressure of the gas is 64.6 mm hg
Answer:
1. When observing a positive test for the jones reagent and negative for the Lucas test, it indicates that it is in the presence of a primary alcohol.
Jones reagent behaves like a strong oxidant, where it transforms the primary alcohols into carboxylic acids and the secondary alcohols into ketones. Tertiary alcohols do not react.
With the Lucas test, tertiary alcohols react immediately producing turbidity, while secondary alcohols do so in five minutes. Primary alcohols do not react significantly with Lucas reagent at room temperature.
2. No reaction (See the attached drawing)
3. (see the attached drawing)