Answer:
Measure of ∠BCP is 36°
Step-by-step explanation:
Given the circle in which measure of arc BC is 72°
we have to find the measure of angle BCP.
m∠BOC=∠2=72°
By theorem angle subtended at the centre is twice the angle formed at the circumference of circle.
∴ ∠2=2∠1 ⇒ 72=2∠1
⇒ ∠1=36°
By alternate segment theorem which states that
The angle formed between a chord and a tangent through one of the end points of chord is equals to angle in alternate segment.
⇒ ∠3=∠1=36°
Hence, measure of ∠BCP is 36°
Option D is correct
Answer:
87.0°
Step-by-step explanation:
The law of sines can be used to solve this. We have two sides of a triangle and the angle opposite one of them. We want to find the angle opposite the other known side.
In the attached, the triangle is ΔACS. We have side "a" = 9, and side "c" = 10. Angle A is given as 64°. The law of sines tells us ...
sin(C)/c = sin(A)/a
sin(C) = (c/a)sin(A)
C = arcsin((c/a)sin(A)) = arcsin(10/9·sin(64°)) ≈ 87.03°
The ladder makes an angle of about 87° with the ground.
Answer:
7:8
Step-by-step explanation: