The final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
<h3>
Time of motion of the girl</h3>
The time of motion of the girl is calculated as follows;
h = vt + ¹/₂gt²
where;
- v is initial vertical velocity = 0
- t is time of motion
- g is acceleration due to gravity
Substitute the given parameters and solve for time of motion;
50.8 = 0 + ¹/₂(9.8)t²
2(50.8) = 9.8t²
101.6 = 9.8t²
t² = 101.6/9.8
t² = 10.367
t = √10.367
t = 3.22 seconds
<h3>Final vertical velocity of the skydiver</h3>
vf = vi + gt
where;
vi is the initial vertical velocity = 0
vf = 0 + 9.8(3.22)
vf = 31.56 m/s
Thus, the final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
Learn more about vertical velocity here: brainly.com/question/24949996
#SPJ1
Answer:
maybe alternator..generator..
Answer:
<em>765,000Joules or 765kJ</em>
Explanation:
The Quantity of heat required is expressed as;
Q = (mcΔt)al + (mcΔt)water
m is the mass
c is specific heat capacity
Δt is the change in temperature
Q = (3(900)(90-5)) + (1.5(4200)(90-5))
Q = 2700*85 + 6300*85
Q = (2700+6300)85
Q = 9000*85
<em>Q = 765,000</em>
<em>Hence the amount of energy needed is 765,000Joules or 765kJ</em>
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km