<span>In the 19th century, scientists realized that gases in the atmosphere cause a "greenhouse effect" which affects the planet's temperature. These scientists were interested chiefly in the possibility that a lower level of carbon dioxide gas might explain the ice ages of the distant past. At the turn of the century, Svante Arrhenius calculated that emissions from human industry might someday bring a global warming. Other scientists dismissed his idea as faulty. In 1938, G.S. Callendar argued that the level of carbon dioxide was climbing and raising global temperature, but most scientists found his arguments implausible. It was almost by chance that a few researchers in the 1950s discovered that global warming truly was possible. In the early 1960s, C.D. Keeling measured the level of carbon dioxide in the atmosphere: it was rising fast. Researchers began to take an interest, struggling to understand how the level of carbon dioxide had changed in the past, and how the level was influenced by chemical and biological forces. They found that the gas plays a crucial role in climate change, so that the rising level could gravely affect our future. (This essay covers only developments relating directly to carbon dioxide, with a separate essay for Other Greenhouse Gases. Theories are discussed in the essay on Simple Models of Climate.)</span>
The most dramatic astronomical development of the century thus far is the detection of gravitational waves from merging black holes at a distance of 400 Mpc, during the first science run of the advanced Laser Interferometer Gravitational-Wave Observatory.
The telescope was also very important. Galileo Galilei was the first person to use a telescope to look at celestial bodies (though he did not invent the telescope) and discovered the four brightest moons of Jupiter, proving that there are things in the Solar System that don't revolve around the Sun.
Physical cosmology is the branch of physics and astrophysics that deals with the study of the physical origins and evolution of the Universe. It also includes the study of the nature of the Universe on a large scale. In its earliest form, it was what is now known as "celestial mechanics", the study of the heavens.
Hope this helps you :)
Answer:
Sedimentary Rock. You know from the fossils and remains of shells inside.
Explanation:
If it were igneous, the fossils would be melted away. Maybe not with metamorphic, but it's most likely sedimentary.
Answer:
the difference between blood and urine is it is red, it is yellow, it has a ph of 7.4 and it has a ph of 4.6