Answer:
950
Step-by-step explanation:
The common difference is 4, so the general term can be written:
... an = 14 + 4(n -1)
The value of n for the last term is ...
... 86 = 14 + 4(n -1) . . . . . the computation for the last term, 86
... 72 = 4(n -1) . . . . . . . . . subtract 14
... 18 = n -1 . . . . . . . . . . . divide by 4
... 19 = n . . . . . . . . . . . . . add 1
Your series has 19 terms. The first term is 14 and the last is 86, so the average term is (14+86)/2 = 50. Since there are 19 terms, the sum of them is ...
... 19×50 = 950
First look for the fundamental solutions by solving the homogeneous version of the ODE:

The characteristic equation is

with roots
and
, giving the two solutions
and
.
For the non-homogeneous version, you can exploit the superposition principle and consider one term from the right side at a time.

Assume the ansatz solution,



(You could include a constant term <em>f</em> here, but it would get absorbed by the first solution
anyway.)
Substitute these into the ODE:




is already accounted for, so assume an ansatz of the form



Substitute into the ODE:





Assume an ansatz solution



Substitute into the ODE:



So, the general solution of the original ODE is

Answer: -5.27 + (-3.32) = -8.59 and -5.6 + 27.4 = 21.8
Step-by-step explanation: Have a nice day bro!✌️
Answer:
Step-by-step explanation:
If you draw a line from the origin (0,0) to L ( the original point ) and a different line from the origin to the image L' you can see the angle of rotation as being
90 degrees and that the rotation is clockwise.
the rule is (x, y) become ( y, -x)