*see attachment for diagram
Answer:
Perimeter = 38
Step-by-step explanation:
Recall: when two tangents are drawn to meet at a point outside a circle, the segments of the two tangents are congruent.
Given,
CQ = 5
PQ = 10
PR = 14
Perimeter of ∆PQR = RC + CQ + QB + BP + PA + AR
CQ = QB = 5 (tangents drawn from an external point)
BP = PQ - QB
BP = 10 - 5 = 5
BP = PA = 5 (tangents drawn from an external point)
AR = PR - PA
AR = 14 - 5 = 9
AR = RC = 9 (tangents drawn from an external point)
✔️Perimeter of ∆PQR = RC + CQ + QB + BP + PA + AR
= 9 + 5 + 5 + 5 + 5 + 9
Perimeter = 38
Answer:
d
Step-by-step explanation:
Answer:
-4n - 5
Step-by-step explanation:
4 - 9
= -5
-5n + n
Combine like terms
= -4n
-4n - 5
Answer:

Step-by-step explanation:
Given


Required
Determine Y'
Y' can be solved by multiplying the scale factor by Y
i.e.

For, the x coordinates.

Where




For the y coordinates:

Where




Hence:

- 4 - 4 + 4 ÷ 4
- 4 ÷ 4 + 4 ÷ 4
- (4 + 4 + 4) ÷ 4
- √4 + √4 + 4 - 4
- √4 + 4 + 4 ÷ 4
- √4 + 4 + 4 - 4
- 4 + 4 - 4 ÷ 4
- 4 + 4 + 4 - 4
- 4 + 4 + 4 ÷ 4
- √4 + √4 + √4 + 4
- 44/(√4 + √4)
- √4 + √4 + 4 + 4
- 44/4 + 4
- 4 + 4 + 4 + √4
- 44/4 + 4
- 4 * 4 * 4 ÷ 4
- 4 * 4 + 4 ÷ 4
- 4 * 4 - √4 + 4
- 4! - 4 - 4 ÷ 4
- 4 * (4 + 4 ÷ 4)
- 4! - 4 + 4 ÷ 4
- 4 * 4 + 4 + √4
- 4! - √4 + 4/4
- 4 * (√4 + √4 + √4)
- 4! + √2 - 4 ÷ 4
- 4! + √4 + 4 - 4
- 4! + √4 + 4 ÷ 4
- 4! + 4 + 4 - 4
- 4! + 4 + 4 ÷ 4
- 4! + √4 + √4 + √4
Lol, that took a while, hope it helps!