Given :
On a coordinate plane,a curved line with 3 arcs, lab led f of x, crosses the x-axis at (negative 2,0), (negative 1,0), (1,0), and (3,0) and the y axis at (0, negative 6).
To find:
f when x = 0. i.e. f (0).
Solution:
since the graph has 3 arcs and 4 solutions, it can be visualized as the follows:
Between each solution, the function has to increase and decrease giving arcs in between.
1. One of the arcs is between (negative 2,0) and negative (1,0)
2. Second arc is between (negative 1,0) and (1,0)
-this arc cuts the y axis, since x= 0 lies between x= -1 & x=1-
3. Third arc is between (1,0) and (3,0)
Therefore only the 2nd arc cuts the y axis
It’s given that the curve cuts the y axis at (0, -6)
That is when x= 0, f(0) =-6
Therefore the value of f (0) is -6 only.
HOPED THIS HELPED LUV!!
Answer:
125° and 55°
Step-by-step explanation:
∠ BCE and ∠ ECF are adjacent angles and are supplementary, thus
10x + 15 + 5x = 180, that is
15x + 15 = 180 ( subtract 15 from both sides )
15x = 165 ( divide both sides by 15 )
x = 11
Thus
∠ BCE = 10x + 15 = 10(11) + 15 = 110 + 15 = 125°
∠ ECF = 5x = 5(11) = 55°
Answer:
the answer would be (-4,-6)
Step-by-step explanation:
hope this helps ya
good luck!!!!!
Answer:
its d
Step-by-step explanation: