Only the upper-left statement is NOT true.
Answer:
79.6875 % If you can round, please do.
Step-by-step explanation:
Answer:
![f(g(x))=\frac{1}{(x^{2}+1)^{2}} +\sqrt[3]{x^{2}+1}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D%5Cfrac%7B1%7D%7B%28x%5E%7B2%7D%2B1%29%5E%7B2%7D%7D%20%2B%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%2B1%7D)
Step-by-step explanation:
we have
![f(x)=x^{2} +\frac{1}{\sqrt[3]{x}}](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B2%7D%20%2B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D)

we know that
In the function

The variable of the function f is now the function g(x)
substitute
![f(g(x))=(\frac{1}{x^{2}+1})^{2} +\frac{1}{\sqrt[3]{(\frac{1}{x^{2}+1})}}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D%28%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%2B1%7D%29%5E%7B2%7D%20%2B%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7B%28%5Cfrac%7B1%7D%7Bx%5E%7B2%7D%2B1%7D%29%7D%7D)
![f(g(x))=\frac{1}{(x^{2}+1)^{2}} +\sqrt[3]{x^{2}+1}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3D%5Cfrac%7B1%7D%7B%28x%5E%7B2%7D%2B1%29%5E%7B2%7D%7D%20%2B%5Csqrt%5B3%5D%7Bx%5E%7B2%7D%2B1%7D)
When you see the 'line' is increasing starting from 0 to 2 hours, this indicates that the person on the graph is riding up a hill. This is known as positive acceleration or constant positive acceleration.
Where you see the 'line' stays the same 2 to 5 hours, this can indicate that the bike rider is doing one or two things. One thing the biker could be doing is taking a rest, and the other could be that the biker is riding at a leveled ground. This could be known as having constant velocity or zero acceleration.
Finally, where the 'line' is decreasing from 5 to 6 hours, this can indicate that biker is riding, possibly, down a hill. This is known as negative acceleration.
And of course, when the 'line' is going up again from 6 to 7 hours, this indicates that the biker is riding up a hill or increasing his speed. This is known as positive acceleration or constant positive acceleration.
•
•
- Marlon Nunez