Answer:
c. 0.1 M Ga₂(SO₄)₃
Explanation:
The boiling point increasing of a solvent due the addition of a solute follows the formula:
ΔT = K*m*i
<em>Where K is boiling point increasing constant (Depends of the solute), m is molality = molarity when solvent is water, and i is Van't Hoff factor.</em>
<em />
That means the option with the higher m*i will be the solution with the highest boiling point:
a. NaCl has i = 2 (NaCl dissociates in Na⁺ and Cl⁻ ions).
m* i = 0.20*2 = 0.4
b. CaCl₂; i = 3. 3 ions.
m*i= 0.10M * 3 = 0.3
c. Ga₂(SO₄)₃ dissolves in 5 ions. i = 5
m*i = 0.10M*55 = 0.5
d. C₆H₁₂O₆ has i = 1:
m*i = 0.2M*1 = 0.2
The solution with highest boiling point is:
<h3>
c. 0.1 M Ga₂(SO₄)₃</h3>
H2SO4 + 2RbOH -> Rb2SO4 + 2H2O
If you want an explanation, keep reading.
In the first portion, there are two hydrogen ions and four sulfate ions.
The second portion has one rubidium ions and one hydroxide ion.
On the other side of the equation, in order to keep those two rubidiums balanced, you'll need to add a two at the beginning of the second portion, but in that process you are giving a second hydroxide value.
Back to the right side, there is there is water (H2O).
On the first portion, there were two hydrogen ions. The second portion also has two hydroxides because of the value change (adding the two to the front).
So on the fourth portion, you'd have to add another two so you could balance the four hydrogen ions (H2 and 2OH) and the two oxygen ions (2OH).
I hope this was easy to understand.
The reason we cannot breath liquid water is because the oxygen used to make the water is bound to two hydrogen atoms and we cannot breath the resulting liquid
A
Explanation:
Weather can be defined as the day-to-day changes in the atmospheric parameters like temperatures, humidity, rainfall, and pressure. When these weather changes are observed for approximately over 30 years, the climate of the regions can be determined by understanding the patterns.