Answer:
A mole is __a substance is defined as: The mass of substance containing the same number of fundamental units as there are atoms in exactly 12.000 g of 12C. Fundamental units may be atoms, molecules, or formula units, depending on the substance concerned.
Explanation:
Answers are:
2. It pushes on all objects that are on Earth’s surface.
3. It can be measured in atmospheres or kilopascals.
Barometric pressure (atmospheric pressure), is the pressure within the atmosphere of Earth
Atmospheric pressure decreases with increasing height, because there are fewer air molecules above a given object.
Barometer is an instrument used in meteorology to measure atmospheric pressure.
Atmospheric pressure (atm) is the force per unit area by the weight of air above that point.
Kilopascal (kPa) is a metric system pressure unit and equals to 1000 force of newton per square meter.
Atmospheric pressure results from molecular collisions of atmospheric gases.
Answer : Amoxicillin Suspension 125 mg/ 5 ml is 125 mg of Amoxicillin per 5 ml of suspension is an example of weight to volume.
Explanation :
Weight by volume (w/v) means that the mass of solute present in 100 mL volume of solution.
Weight by weight (w/w) means that the mass of solute present in 100 gram of solution.
Volume by volume (v/v) means that the volume of solute present in 100 mL volume of solution.
As per question, amoxicillin suspension is, 125 mg/ 5 ml that means 125 mg of Amoxicillin present in 5 mL of suspension. So, it is an example of weight to volume.
Hence, it is an example of weight to volume.
If you’re talking about noble gases, the answer would be A. Since noble gases already have 8 electrons, they don’t tend to form chemical bonds. And elements need just 8 electrons on there shells to be stable.
The correct question is as follows: 0.500 moles of potassium oxide is dissolved in enough water to make 2.00 L of solution. Calculate the molarity of this solution (plz help!)
Answer: The molarity of this solution is 0.25 M.
Explanation:
Molarity is the number of moles of a substance divided by volume in liter.
As it is given that there are 0.5 moles of potassium oxide in 2.00 L of water so, the molarity of this solution is calculated as follows.

Thus, we can conclude that molarity of this solution is 0.25 M.