The statement 'establishing a high critical value in a statistical test is associated with more confidence' is TRUE.
<h3>What is statistical significance?</h3>
The statistical significance is a arbitrary value used to indicate that data collected can be used to confirm (or reject) my working hypothesis.
The most widely used value to measure the statistical significance is the p threshold.
In conclusion, the statement 'Establishing a high critical value when calculating the results of a statistical test means that a researcher will have more confidence in finding significance than when a lower critical value is established' is TRUE.
Learn more about statistical significance here:
brainly.com/question/15848236
#SPJ1
Answer: Dependent Unit or System of Units
Explanation:
Density is calculated by dividing mass (Kg) by volume (L).
The unit of Density is Kg/L or one of their derivatives such as g/cm³.
On a worldwide scale, the most common fuels are wood, grass, peat, coal, and animal fats and oils.
Answer:
x=0.53
Explanation:
Using Gauss law the field is uniform so
E=ζ/ε
Charge densities ⇒ζ=1.
ε=8.85

Force of charge is


So finally knowing the acceleration and the time the distance can be find using equation of uniform motion
