1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
6

PLEASE HELP I DON'T KNOW HOW TO DO THIS?!?!??!??!?!?!?

Mathematics
2 answers:
PolarNik [594]3 years ago
4 0
2. Would actually be 2.5x10
forsale [732]3 years ago
3 0

Answer:

2. 250 = 2.50 x 100 = 2.50 x 10^2

Step-by-step explanation:

You might be interested in
What do i do please help!
Art [367]

Answer:

Step-by-step explanation:

this is confusing b/c they are asking about two trains traveling at differnt speeds, but.. if you put the speeds together and make one train... imaginary.. ofc... traveling at the speed of both trains combined... when will it be 50 miles from the station?

maybe you can solve that?   I'll solve it below.. but.. if you can.. try it now, on your own

below is my answer... don't look until you have solved yours :P

80+70= 150kph

when will this have traveled 50Km?

you may be able to see that it will take 1/3 of an hour to travel 50 km

so 60 minutes times 1/3 = 20 minutes  :)

8 0
3 years ago
You’re given two side lengths of 6 centimeters and 9 centimeters. Which measurement can you use for the lengths of the third sid
Vadim26 [7]

If we have a triangle with sides a,b,c then

b-a < c < b+a

describes the restriction of the length of side c, given sides a and b. This is due to the triangle inequality theorem.

a = 6

b = 9

b-a < c < b+a

9-6 < c < 9+6

3 < c < 15

<h3>Answer: The third side is between 3 cm and 15 cm. The third side cannot equal 3 cm, and it also cannot equal 15 cm. </h3>
3 0
3 years ago
72 is what percent of 36
Goryan [66]
So the 72 is 200% of 36
8 0
3 years ago
Question 11 12 and 13 Will be brainliest 20 POINTS NO EXPLANATION NEEDED
Mice21 [21]

i read in class 4 but I don't explain the answer

5 0
2 years ago
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
Other questions:
  • What is the answer to 3y-3=15+2y
    9·1 answer
  • What effect does replacing x with x + 2 have on the graph for the function f(x) ?
    9·1 answer
  • The length of a rectangle is 4times the width. The perimeter is 90cm. Find the length and width
    12·1 answer
  • A recipe calls for 40 ounces of rice how many grams does the recipe require (one of the answers up there)
    15·1 answer
  • Write and equation in which the quadratic expression 2x^2 -2x -12 equals 0. Show the expression in factored form and explain wha
    6·1 answer
  • Hank is mowing lawns to earn enough to buy a $1400 computer. After 4 weeks, he has earned $340. What is the least number of full
    6·1 answer
  • Solve using the quadratic formula: 2n^2= 6n - 2
    8·1 answer
  • Can someone help me rnnn please??
    11·1 answer
  • Fill in the blank to make the fractions equivalent. 5/6 ?/12<br>​
    5·1 answer
  • The exam scores in Bryan's class are Normally
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!