Answer:
E = 10t^2e^-10t Joules
Explanation:
Given that the current through a 0.2-H inductor is i(t) = 10te–5t A.
The energy E stored in the inductor can be expressed as
E = 1/2Ll^2
Substitutes the inductor L and the current I into the formula
E = 1/2 × 0.2 × ( 10te^-5t )^2
E = 0.1 × 100t^2e^-10t
E = 10t^2e^-10t Joules
Therefore, the energy stored in the inductor is 10t^2e^-10t Joules
Answer:
dT(t)/dt = k[T5 - T(t)]
Explanation:
Since T(t) represents the temperature of the object and T5 represents the temperature of the surroundings, according to Newton's law of cooling, the rate at which an object's temperature changes is directly proportional to the difference in temperature between the object and the surrounding medium, that is dT(t)/dt ∝ T5 - T(t)
Introducing the constant of proportionality
dT(t)/dt = k[T5 - T(t)]
which is the desired differential equation
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!
Answer:
u need to make sure that comparison is = to shapes and then find the shapes sizes and add them
Within the system of the same star, the period of a planet's orbit is
proportional to the 3/2 power of its distance from the central body.
(Kepler's empirical third law of planetary motion, promoted to being
etched in stone by Newton's gravitation.)
(4) ^ 3/2 = <em>8 times</em> as long.