To solve this problem we will use the definition of the period in a simple pendulum, which warns that it is dependent on its length and gravity as follows:

Here,
L = Length
g = Acceleration due to gravity
We can realize that
is a constant so it is proportional to the square root of its length over its gravity,

Since the body is in constant free fall, that is, a point where gravity tends to be zero:

The value of the period will tend to infinity. This indicates that the pendulum will no longer oscillate because both the pendulum and the point to which it is attached are in free fall.
<span>This problem is relatively simple, in order to solve this problem the only formula you need to know is the formula for friction, which is:
Ff = UsN
where Us is the coefficient of static friction and N is the normal force.
In order to get the crate moving you must first apply enough force to overcome the static friction:
Fapplied = Ff
Since Fapplied = 43 Newtons:
Fapplied = Ff = 43 = UsN
and it was given that Us = 0.11, so all you have to do is isolate N by dividing both sides by 0.11
43/0.11 = N = 390.9 which is approximately 391 or C. 3.9x10^2</span>
<span> y=y0 + vt +1/2gt^2
(solve for t here) cause you know y,y0,v,g
you will do quad formula here
then:
v=v0 +at solve for v
(remember the direction of the ball too (signs))
The main thing to remember here is that when the ball passes exactly (height) where it was launched it will travel the speed at which it was launched. *its almost like the ball was thrown in the downward direction. </span>
Solar system is the gravitationally bound system that consists of the sun and the objects that orbit around it directly or indirectly. These objects includes the planets which orbit the sun directly an other small objects such as meteoroids, asteroids, satellites of the planets and numerous comets. The sun makes up most of the solar system' mass.
Answer:
You are asked to design a cylindrical steel rod 50.0 cm long, with a circular cross section, that will conduct 170.0 J/s from a furnace at 350.0 ∘C to a container of boiling water under 1 atmosphere.
Explanation:
Given Values:
L = 50 cm = 0.5 m
H = 170 j/s
To find the diameter of the rod, we have to find the area of the rod using the following formula.
Here Tc = 100.0° C
k = 50.2
H = k × A × ![\frac{[T_{H -}T_{C} ] }{L}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BT_%7BH%20-%7DT_%7BC%7D%20%5D%20%7D%7BL%7D)
Solving for A
A = ![\frac{H * L }{k * [ T_{H}- T_{C} ] }](https://tex.z-dn.net/?f=%5Cfrac%7BH%20%2A%20L%20%7D%7Bk%20%2A%20%5B%20T_%7BH%7D-%20T_%7BC%7D%20%5D%20%7D)
A = ![\frac{170 * 0.5}{50.2 * [ 350 - 100 ]}](https://tex.z-dn.net/?f=%5Cfrac%7B170%20%2A%200.5%7D%7B50.2%20%2A%20%5B%20350%20-%20100%20%5D%7D)
A =
= 6.77 ×
m²
Now Area of cylinder is :
A =
d²
solving for d:
d = 
d = 9.28 cm