Answer:
B ) He was the first to systematically study force and motion.
Explanation:
I seen this one before and know the answer since there's 4 options

Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them. The forces along the line joining the centre of the two objects.
❍ Let us consider two masses m1 and m2 line at a separation distance d. Let the force of attraction between the two objects be F.
According to universal law of gravitation,

Also,

Combining both, We will get

Or, We can write it as,

Where, G is the constant of proportionality and it is called 'Universal Gravitational constant'.
☯️ Hence, derived !!
<u>━━━━━━━━━━━━━━━━━━━━</u>
Answer:
Red line is reflected ray.
Explanation:
According to the given figure, the blue line represent the incident ray. It strikes the surface and reflection occurs. The dotted line shows normal.
After reflecting the surface, the ray of light is reflected. Red line shows the reflected light.
In this case, the laws of reflection follows i.e. the angle of incidence is equal to the angle of reflection.
Answer:
Their measured results are closer to the exact or true value. Hence, their measured value is considered to be more accurate.
Explanation:
Considering the situation described above, the accuracy of a measured value depicts how closely a measured value is to the accurate value.
Hence, since the students' measured values have very low percent differences, it shows the similarity of computations or estimates to the actual values, which in turn offers a smaller measurement error.
Therefore, their measured results are closer to the exact or true value, which implies that their measured value is considered to be more accurate.
ΔVl = L di/dt
i = i₀e -t/T
di/dt = i₀ × (-1/T) e -t/T
ΔVl = L× (-I/T i₀e -t/T
ΔVl = -L/T i₀e -t/T
b. 15mm, i₀ = 36mA, T = 1.1m
t= Os
ΔVl = 0,491V
C. t = 1ms
ΔVl = 0.198V
t = 2ms
ΔVl = 0.08V
E. t = ms
ΔVl = 0.032V