Answer:
3 seconds
Explanation:
Applying,
Applying,
v = u±gt................ Equation 1
Where v = final velocity, u = initial velocity, t = time, g = acceleration due to gravity.
From the question,
Given: v = 0 m/s ( at the maximum height), u = 30 m/s
Constant: g = -10 m/s
Substitute these values into equation 1
0 = 30-10t
10t = 30
t = 30/10
t = 3 seconds
Answer:
The kinetic energy of the ejected electrons increases.
Explanation:
As we know that electrons are only ejected from a metal surface if the frequency of the incident light increases the work function of the metal. If the frequency of the incident light is less than the work function of the metal no matter how intense the beam the electrons will not be ejected from the surface.
Using conservation of energy principle we have
If we increase the intensity of incident light the term on the LHS of the above equation increases this increase appears in the kinetic energy term in RHS of the equation since
remains constant.
<em>It is the process in which green plants make their food through a green pigment known as Chlorophyll by using sunlight, Carbon-dioxide and water</em>. <em>The result comes out with the formation of Oxygen as a byproduct. But in night they also respire like animals and photosynthesis does not occur. Photo means light and synthesis means manufacture.</em>
Answer:
YFy = 0 = Ffsinθ + Fncosθ - Fw
Explanation:
From the base of the vector Fn, draw a vertical line. the small angle between this line and Fn is also theta. The component of Fn in the vertical direction is Fncos(theta).
Take a moment to picture extreme cases. Sine is 0 at 0 and 1 at 90. Cosine is 1 at 0 and 0 at 90.
Tilt the incline so that the box is on a flat surface. How much of the gravitational force is along the x direction of the floor.
I think your question is incomplete because the distance between destination and departure point isn't given in the question