1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slega [8]
3 years ago
10

A lead ball is dropped into a lake from a diving board 6.10 mm above the water. After entering the water, it sinks to the bottom

with a constant velocity equal to the velocity with which it hit the water. The ball reaches the bottom 4.50 ss after it is released. How deep is the lake?
Physics
2 answers:
olga55 [171]3 years ago
5 0

Answer: d = 1.54m

The depth of the lake is 1.54m

Explanation:

The final velocity of the ball just before it hit the water can be derived using the equation below;

v^2 = u^2 + 2as ......1

Where ;

v is the final velocity

u is the initial velocity

a is the acceleration

s is the distance travelled.

Since the initial velocity is zero, and the acceleration is due to gravity, the equation becomes:

v^2 = 2gs

v = √2gs ......2

g = 9.8m/s^2

s = 6.10mm = 0.0061m

substituting into equation 2

v = √(2 × 9.8× 0.0061)

v = 0.346m/s

The time taken for the ball to hit water from the time of release can be given as:

d = ut + 0.5gt^2

Since u = 0

d = 0.5gt^2

Making t the subject of formula.

t = √(2d/g)

t = √( 2×0.0061/9.8)

t = 0.035s

The time taken for the ball to reach the bottom of the lake from the when it hits water is:

t2 = 4.5s - 0.035s = 4.465s

And since the ball falls for 4.465s to the bottom of the lake at the same velocity as v = 0.346m/s. The depth of the lake can be calculated as;

depth d = velocity × time = 0.346m/s × 4.465s

d = 1.54m

The depth of the lake is 1.54m

sveticcg [70]3 years ago
3 0

Answer:

D=1.54489 m

Explanation:

Given data

S=6.10 mm= 0.0061 m

To find

Depth of lake

Solution

To find the depth of lake first we need to find the initial time ball takes to hit the water.To get the value of time use below equation

S=v_{1}t+(1/2)gt^{2} \\ 0.0061m=(0m/s)t+(1/2)(9.8m/s^{2} )t^{2}\\ t^{2}=\frac{0.0061m}{4.9m/s^{2} }\\  t=\sqrt{1.245*10^{-3} }\\ t=0.035s

So ball takes 0.035sec to hit the water

As we have found time Now we need to find the final velocity of ball when it enters the lake.So final velocity is given as

v_{f}=v_{i}+gt\\v_{f}=0+(9.8m/s^{2} )(0.035s)\\ v_{f}=0.346m/s

Since there are (4.50-0.035) seconds left for (ball) it to reach the bottom of the lake

So the depth of lake given as:

D=|vt|\\D=|0.346m/s*4.465s|\\D=1.54489m

You might be interested in
Solenoid is another word for
Artyom0805 [142]
Answer: coil of wire
5 0
3 years ago
You're driving a vehicle of mass 1350 kg and you need to make a turn on a flat road. The radius of curvature of the turn is 71 m
sergey [27]

Answer:

v=12.65\ m.s^{-1}

Explanation:

Given:

  • mass of vehicle, m=1350\ kg
  • radius of curvature, r=71\ m
  • coefficient of friction, \mu=0.23

<u>During the turn to prevent the skidding of the vehicle its centripetal force must be equal to the opposite balancing frictional force:</u>

m.\frac{v^2}{r} =\mu.N

where:

\mu= coefficient of friction

N= normal reaction force due to weight of the car

v= velocity of the car

1350\times \frac{v^2}{71} =0.23\times (1350\times 9.8)

v=12.65\ m.s^{-1} is the maximum velocity at which the vehicle can turn without skidding.

5 0
3 years ago
Your grandmother enjoys creating pottery as a hobby. She uses a potter's wheel, which is a stone disk of radius R-0.520 m and ma
Lesechka [4]

Answer:

0.54454

104.00902 N

Explanation:

m = Mass of wheel = 100 kg

r = Radius = 0.52 m

t = Time taken = 6 seconds

\omega_f = Final angular velocity

\omega_i = Initial angular velocity

\alpha = Angular acceleration

Mass of inertia is given by

I=\dfrac{mr^2}{2}\\\Rightarrow I=\dfrac{100\times 0.52^2}{2}\\\Rightarrow I=13.52\ kgm^2

Angular acceleration is given by

\alpha=\dfrac{\tau}{I}\\\Rightarrow \alpha=\dfrac{\mu fr}{I}\\\Rightarrow \alpha=\dfrac{\mu 50\times 0.52}{13.52}

Equation of rotational motion

\omega_f=\omega_i+\alpha t\\\Rightarrow \omega_f=\omega_i+\dfrac{\mu (-50)\times 0.52}{13.52}t\\\Rightarrow 0=60\times \dfrac{2\pi}{60}+\dfrac{\mu (-50)\times 0.52}{13.52}\times 6\\\Rightarrow 0=6.28318-11.53846\mu\\\Rightarrow \mu=\dfrac{6.28318}{11.53846}\\\Rightarrow \mu=0.54454

The coefficient of friction is 0.54454

At r = 0.25 m

\omega_f=\omega_i+\dfrac{0.54454 (-50)\times 0.52}{13.52}6\\\Rightarrow 0=60\times \dfrac{2\pi}{60}+\dfrac{0.54454 f\times 0.25}{13.52}6\\\Rightarrow 2\pi=0.06041f\\\Rightarrow f=\dfrac{2\pi}{0.06041}\\\Rightarrow f=104.00902\ N

The force needed to stop the wheel is 104.00902 N

5 0
3 years ago
A uniformly charged, straight filament 5.10 m in length has a total positive charge of 2.00 µC. An uncharged cardboard cylinder
Ratling [72]

Answer:

70509.8039216 N/C

Explanation:

k = Coulomb constant = 8.99\times 10^{9}\ Nm^2/C^2

q = Charge = 2.00 µC

l = Length of filament = 5.1 m

r = Radius of cylinder = 10 cm

\lambda=\dfrac{q}{l}

Electric field is given by

E=\dfrac{2k\lambda}{r}\\\Rightarrow E=\dfrac{2\times 8.99\times 10^9\times \dfrac{2\times 10^{-6}}{5.1}}{10\times 10^{-2}}\\\Rightarrow E=70509.8039216\ N/C

The electric field at the surface of the cylinder is 70509.8039216 N/C

7 0
3 years ago
Read 2 more answers
5 milligrams into quintal​
Greeley [361]

Answer:

divide the mass value by 1e+8

4 0
3 years ago
Other questions:
  • A fish appears to be 2.00 m below the surface of a pond (nwater = 1.33) when viewed almost directly above by a fisherman. What i
    7·2 answers
  • Which of the following types of weather data is collected in inches or centimeters?
    15·2 answers
  • An AC power source has an rms voltage of 120 V and operates at a frequency of 60.0 Hz. If a purely inductive circuit is made fro
    5·1 answer
  • Which of the following BEST explains why stability is an important skill for athletes?
    6·2 answers
  • Use the drop-down menus to complete the statements. When the 5.0 kg cylinder fell 100 m, the final temperature of the water was
    12·1 answer
  • Which is an example of a mixture made of parts that can easily be separated?
    15·1 answer
  • If I run back and forth on a basketball court that is 25 m long 12 times, and end up
    15·1 answer
  • 16. The sum of kinetic energies in an object.
    8·1 answer
  • Kūna veikia 3N jėga kurios petys 20 cm. Koks jos momentas?​
    9·1 answer
  • What is the definition for scientific model?​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!