The reducing agent can approach the carbonyl face of camphor by forming a one carbon bridge (known as an exo attack) or a two carbon bridge (termed endo).
The two resultant stereoisomers are known as isoborneol and borneol (from exo attack) (from endo attack). Gas chromatography (GC) analysis may be used to calculate the ratio of each isomeric alcohol in the mixture. Unfortunately, IR analysis does not permit this.
The stereochemistry of the reaction is regulated in stiff cyclic compounds like camphor and norcamphor by protecting one side of the carbonyl group from the reagent's assault. The hydrogen atom is added to the endo side, creating the exo alcohol isoborneol, while the methyl groups on the one-carbon bridge of camphor screen the approach of the hydride from the "top" or exo side of the two-carbon bridge. You will be asked to guess the main isomeric alcohol created by the norcamphor hydride reduction later in the lab report.
To view more about rational reaction, refer to:
brainly.com/question/20308523
#SPJ4
Answer:
D) contains more OH– ions than H+ ions
Explanation:
THESE ARE THE OPTIONS FOR THE QUESTION
A) causes some indicators to change color B) conducts electricity C) contains more H+ ions than OH– ions D) contains more OH– ions than H+ ions
Base can be regarded as substance which can dissociates in water then form hydroxide ions (OH–) .
Bases can be regarded as compounds which break into hydroxide ions I.e (OH-) with more other compounds if put in an aqueous solution. Hence it contains more OH– ions
Answer:
The proportionality constant ( Henry’s constant) = 2.32 * 10^-5 M/kPa
Explanation:
Here in this question, we are concerned with calculating the proportionality constant for this gas.
Mathematically, we can get this from Henry law
From Henry law;
Concentration = Henry constant * partial pressure
Thus Henry constant = concentration/partial pressure
Henry constant = 0.00290 M/125 kPa = 2.32 * 10^-5 M/kPa