The amount of heat energy needed to convert 400 g of ice at -38 °C to steam at 160 °C is 1.28×10⁶ J (Option D)
<h3>How to determine the heat required change the temperature from –38 °C to 0 °C </h3>
- Mass (M) = 400 g = 400 / 1000 = 0.4 Kg
- Initial temperature (T₁) = –25 °C
- Final temperature (T₂) = 0 °
- Change in temperature (ΔT) = 0 – (–38) = 38 °C
- Specific heat capacity (C) = 2050 J/(kg·°C)
- Heat (Q₁) =?
Q = MCΔT
Q₁ = 0.4 × 2050 × 38
Q₁ = 31160 J
<h3>How to determine the heat required to melt the ice at 0 °C</h3>
- Mass (m) = 0.4 Kg
- Latent heat of fusion (L) = 334 KJ/Kg = 334 × 1000 = 334000 J/Kg
- Heat (Q₂) =?
Q = mL
Q₂ = 0.4 × 334000
Q₂ = 133600 J
<h3>How to determine the heat required to change the temperature from 0 °C to 100 °C </h3>
- Mass (M) = 0.4 Kg
- Initial temperature (T₁) = 0 °C
- Final temperature (T₂) = 100 °C
- Change in temperature (ΔT) = 100 – 0 = 100 °C
- Specific heat capacity (C) = 4180 J/(kg·°C)
- Heat (Q₃) =?
Q = MCΔT
Q₃ = 0.4 × 4180 × 100
Q₃ = 167200 J
<h3>How to determine the heat required to vaporize the water at 100 °C</h3>
- Mass (m) = 0.4 Kg
- Latent heat of vaporisation (Hv) = 2260 KJ/Kg = 2260 × 1000 = 2260000 J/Kg
- Heat (Q₄) =?
Q = mHv
Q₄ = 0.4 × 2260000
Q₄ = 904000 J
<h3>How to determine the heat required to change the temperature from 100 °C to 160 °C </h3>
- Mass (M) = 0.4 Kg
- Initial temperature (T₁) = 100 °C
- Final temperature (T₂) = 160 °C
- Change in temperature (ΔT) = 160 – 100 = 60 °C
- Specific heat capacity (C) = 1996 J/(kg·°C)
- Heat (Q₅) =?
Q = MCΔT
Q₅ = 0.4 × 1996 × 60
Q₅ = 47904 J
<h3>How to determine the heat required to change the temperature from –38 °C to 160 °C</h3>
- Heat for –38 °C to 0°C (Q₁) = 31160 J
- Heat for melting (Q₂) = 133600 J
- Heat for 0 °C to 100 °C (Q₃) = 167200 J
- Heat for vaporization (Q₄) = 904000 J
- Heat for 100 °C to 160 °C (Q₅) = 47904 J
- Heat for –38 °C to 160 °C (Qₜ) =?
Qₜ = Q₁ + Q₂ + Q₃ + Q₄ + Q₅
Qₜ = 31160 + 133600 + 167200 + 904000 + 47904
Qₜ = 1.28×10⁶ J
Learn more about heat transfer:
brainly.com/question/10286596
#SPJ1
Atomic Number of Zinc is 30, means it contains 30 electrons. So, its electronic configuration is as follow,
1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰
As,
1s², 2s², 2p⁶, 3s², 3p⁶ = Argon
So,
Electronic configuration of Zinc in shorthand notation is as follow,
[Ar] 4s², 3d¹⁰
Answer:
20 atoms
Explanation:
There are 4 in H2O2 because of 2 hydrogens and 2 oxygens.
Then, multiply by 5 because the coefficient is 5, therefore there are 5 H2O2 molecules.
5 x 4 = 20
Answer:
7.5 M
Explanation:
In order to find a solution's molar concentration, or molarity, you need to determine how many moles of solute, which in your case is sodium sulfate,
Na
2
SO
4
, you get in one liter of solution.
That is how molarity was defined -- the number of moles of solute in one liter of solution.
So, you know that you have
0.090
moles of solute in
12 mL
of solution. Your goal here will be to scale up this solution by using this information as a conversion factor to help you determine the number of moles of solute present in
Answer:
BRAINLIEST PLZZZ
Explanation:
All types of organisms are capable of reproduction, growth and development, maintenance, and some degree of response to stimuli.