Ba2+ and Cu2+, and Sr2+ and Li+
Answer:
0.675 atm
513 Torr
Explanation:
Given is that, the atmospheric pressure on the surface of Venus is
6.84 X 10⁴ Pa.
1 atm (atmospheric pressure) is equal to 101325 pascal (Pa).
To convert divide the pressure value by 101325.
Pressure in atm = 
= 0.675055 atm
Rounding it off to 3 significant digits: 0.675 atm
Now, one Torr is 133.322 Pa. For conversion, divide the pressure value by 133.322.
Pressure in Torr = 
=513.04219 Torr
Rounding it off to 3 significant digits: 513 Torr
Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7
Answer:
The correct statement is:
E - The entropy of the products is greater than the entropy of the reactants.
Explanation:
C₆H₁₂O₆ + 6 O₂ → 6 CO₂ + 6 H₂O
As glucose is a large molecule and then it is transformed into many molecules of water and carbon dioxide, the entropy of the system increases. If the number of molecules increases, the disorder increases.
Initial state: 7 molecules (1 glucose + 6 oxygen)
Final state: 12 molecules (6 carbon dioxide + 6 water)
Answer:
4.52 mol
Explanation:
We do grams/Molar Mass to find the number of moles. The grams are given but the molar mass, you have to add all masses of the elements up by refering to a periodic table, and you should get that the compound has a mass of 158.168. Do 715.11 dived by that and you get the answer above.