Electrons, everything is pretty much based around the likeliness of electrons to be swapped or shared between atoms
Answer:
If 51.8 of Pb is reacting, it will require 4.00 g of O2
If 51.8 g of PbO is formed, it will require 3.47 g of O2.
Explanation:
Equation of the reaction:
2 Pb + O2 → 2 PbO
From the equation of reaction, 2 moles of lead metal, Pb, reacts with 1 mole of oxygen gas, O2, to produce 2 moles of lead (ii) oxide, PbO
Molar mass of Pb = 207 g
Molar mass of O2 = 32 g
Molar mass of PbO = 207 + 32 = 239 g
Therefore 2 × 207 g of Pb reacts with 32 g of O2 to produce 2 × 239 g of PbO
= 414 g of Pb reacts with 32 g of O2 to produce 478 g of PbO
Therefore, formation of 51.8 g of PbO will require (32/478) × 51.8 of O2 = 3.47 g of O2.
If 51.8 of Pb is reacting, it will require (32/414) × 51.8 g of O2 = 4.00 g of O2
Both diamond and graphite are allotropes of carbon. Diamond has a high tensile strength but graphite does not.
<h3>What is a molecular model?</h3>
A molecular model is used to describe the actual behavior of a chemical compound based on the kind of bonds that exists in the molecule. Now we are talking about diamond and graphite.
Graphite is composed of hexagonal rings of carbon atoms that form layers that are held together by weak Van Der Walls forces hence they can slide over each other. This is the reason why graphite does not have a high tensile strength.
On the other hand, diamond is made up of octagonal rings of carbon atoms which are rigid and form a strong covalent network solid that explains why graphite has a high tensile strength.
Learn more about diamond and graphite:brainly.com/question/8853712
#SPJ1
Answer:
I choose D option because may be it's correct
Answer:
its TRUE
Explanation:
These plates lie on top of a partially molten layer of rock called the asthenosphere. Due to the convection of the asthenosphere and lithosphere, the plates move relative to each other at different rates, from two to 15 centimeters (one to six inches) per yea