The number of particles (molecules or atoms) is: 6.022 x 10²³ particles (atoms or molecules).
1 mol of H₂O has 6.022 x 10²³ molecules.
1 mol of Al has 6.022 x 10²³ atoms.
Answer:it have traveled a total of 315 miles
Explanation: 90 times three because 90 mph times 3 hours=270miles+ the 45 miles from the 30 min times 90 mph=45+ 270=315.
Answer:
The molality of the glycerol solution is 2.960×10^-2 mol/kg
Explanation:
Number of moles of glycerol = Molarity × volume of solution = 2.950×10^-2 M × 1 L = 2.950×10^-2 moles
Mass of water = density × volume = 0.9982 g/mL × 998.7 mL = 996.90 g = 996.90/1000 = 0.9969 kg
Molality = number of moles of glycerol/mass of water in kg = 2.950×10^-2/0.9969 = 2.960×10^-2 mol/kg
1- One mole is = 6.02 x 10^23 of anything, So one mole of atoms is 6.02x10^23.
2- when the balloon contains 0.15 moles of Co2 gas so:
the no.of molecules of Co2 = 0.15 x 6.02x 10^23
= 9.0 x 10^22
Answer : The activation energy of the reaction is, 
Solution :
The relation between the rate constant the activation energy is,
![\log \frac{K_2}{K_1}=\frac{Ea}{2.303\times R}\times [\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%5Cfrac%7BK_2%7D%7BK_1%7D%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= initial rate constant = 
= final rate constant = 
= initial temperature = 
= final temperature = 
R = gas constant = 8.314 kJ/moleK
Ea = activation energy
Now put all the given values in the above formula, we get the activation energy.
![\log \frac{8.75\times 10^{-3}L/mole\text{ s}}{4.55\times 10^{-5}L/mole\text{ s}}=\frac{Ea}{2.303\times (8.314kJ/moleK)}\times [\frac{1}{468K}-\frac{1}{531K}]](https://tex.z-dn.net/?f=%5Clog%20%5Cfrac%7B8.75%5Ctimes%2010%5E%7B-3%7DL%2Fmole%5Ctext%7B%20s%7D%7D%7B4.55%5Ctimes%2010%5E%7B-5%7DL%2Fmole%5Ctext%7B%20s%7D%7D%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20%288.314kJ%2FmoleK%29%7D%5Ctimes%20%5B%5Cfrac%7B1%7D%7B468K%7D-%5Cfrac%7B1%7D%7B531K%7D%5D)

Therefore, the activation energy of the reaction is, 