Answer: Decreased risk of heart attack
Explanation:
thats the answer because it actually
increase rish of heart attack
Hope this helps :)
Answer:
9.47 rad/s^2
Explanation:
Diameter = 15 cm, radius, r = diameter / 2 = 7.5 cm = 0.075 m, u = 0, v = 7.1 m/s,
s = 35.4 m
let a be the linear acceleration.
Use III equation of motion.
v^2 = u^2 + 2 a s
7.1 x 7.1 = 0 + 2 x a x 35.4
a = 0.71 m/s^2
Now the relation between linear acceleration and angular acceleration is
a = r x α
where, α is angular acceleration
α = 0.71 / 0.075 = 9.47 rad/s^2
Answer:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
Explanation:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
Answer:
The work done by the applied force is 259.22 J.
Explanation:
The work done by the applied force is given by:

Where:
F: is the applied horizontal force = 108.915 N
d: is the distance = 2.38 m
Hence, the work is:

Therefore, the work done by the applied force is 259.22 J.
I hope it helps you!
Answer:
option C
Explanation:
The correct answer is option C
Kinetic energy is the energy which is due to the motion of body.
Potential energy is the energy due to virtue of position of the object.
option A is not true because potential energy is due the position of the body
Option B should be the potential energy not kinetic energy.;
Option D is motion of individual molecule leads to kinetic energy not potential energy.
So, the correct answer is option is the covalent bonds of a sugar molecule is potential energy because of the position of bond.