By conducting exhaustive, high-intensity online research for about 15 seconds, I found a source that says the speed of sound in copper is 4600 m/s. (You could easily have completed the same research project in about 1/3 of the time it took you to type and post the question here.)
Time it takes = (distance) / (speed)
Time = (25,000 meters) / (4600 m/s)
Time = (25 / 4.6) km-sec/km
<em>Time = 5.43 seconds </em>
Answer:
Time = 0.58 seconds
Explanation:
Given the following data;
Initial momentum = 3 kgm/s
Final momentum = 10 kgm/s
Force = 12 N
To find the time required for the change in momentum;
First of all, we would determine the change in momentum.


Change in momentum = 7 kgm/s
Now, we can find the time required;
Note: the impulse of an object is equal to the change in momentum experienced by the object.
Mathematically, impulse (change in momentum) is given by the formula;

Making "time" the subject of formula, we have;

Substituting into the formula, we have;

Time = 0.58 seconds
Answer:
Police officer
Explanation:
Because police officers wants to gather information on what happens and question people to know everything. That is what Derick is doing
Answer:
D
Explanation:
From the information given:
The angular speed for the block 
Disk radius (r) = 0.2 m
The block Initial velocity is:

Change in the block's angular speed is:

However, on the disk, moment of inertIa is:

The time t = 10s
∴
Frictional torques by the wall on the disk is:

Finally, the frictional force is calculated as:


Answer:
Explanation:
I got everything but i. Don't know why but it's eluding me. So let's do everything but that.
a. PE = mgh so
PE = (2.5)(98)(14) and
PE = 340 J
b.
so
and
KE = 250 J
c. TE = KE + PE so
TE = 340 + 250 and
TE = 590 J
d. PE at 8.7 m:
PE = (2.5)(9.8)(8.7) and
PE = 210 J
e. The KE at the same height:
TE = KE + PE and
590 = KE + 210 so
KE = 380 J
f. The velocity at that height:
and
so
v = 17 m/s
g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:
590 = KE + PE and
PE = (2.5)(9.8)(11.6) so
PE = 280 then
590 = KE + 280 so
KE = 310 then
and
so
v = 16 m/s
h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:
and
26 = 0 + 9.8t and
26 = 9.8t so the time at 26 m/s is
t = 2.7 seconds. Now we use that in the equation for displacement:
Δx =
and filling in the time the object was at 26 m/s:
Δx = 0t +
so
Δx = 36 m
i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.