Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.
Answer: B. the isovolumetric process
Explanation:
In the graph given, the volume is constant throughout. It represents a constant volume process. Such processes are called the isovolumetric process or isochoric process.
<em>Hence, option B is the correct answer.</em>
Option A is incorrect because in an isobaric process, the pressure is constant.
Option C is incorrect because in an isothermal process, the temperature is constant.
Option D is incorrect because in an adiabatic process there is no heat transfer.
Answer: The object changed directions
The object sped up
Explanation:
Answer:
A) Out of the page.
Explanation:
Right-hand rule points the direction of the magnetic field at any point.
<u>Top wire</u>: Current is to the left. Point your thumb to the left and curl your other fingers around the wire. The tips of the four fingers points the direction of the field at that point. In this case, out of the page.
<u>Bottom wire</u>: Current is to the right. Point your thumb to the right and curl your other fingers around the wire. The tips of the four finger points out of the page again.
So, the total field produced by both wires is directed out of the page.
Another method to figure out the direction is the mathematical method.
Use the B-field formula:

The cross product between the direction of the current and the target position gives the direction of the B-field. If the left is -x direction and downwards is the -y direction, then
for the top wire.
for the bottom wire.
Answer with Explanation:
We are given that
Length of wire 1=
Length of wire 2=
Resistivity of copper wire=
Resistivity of aluminum wire=
Wire 1=Copper wire
Wire 2=Aluminum wire
Diameter of both wires are same and resistance of both wires are also same.
We know that
Resistance =
When diameter of wires are same then their cross section area are also same .

When resistance and area are same then the length of wire depend upon the resistivity of wire .
The length of wire is inversely proportional to resistivity.
When resistivity is greater then the length of wire will be short and when the resistivity is small then the length of wire will be large.

Therefore, 
Hence, the length of wire 1 (copper wire) is greater than the length of wire 2 (aluminum).

