Explanation:
Given formula:
ME=
mv²+mgh
To make height the subject of the formula, follow the following procedures;
Subtract
mv² from both side of equation
M.E -
mv² =
mv² -
mv²+mgh
This gives:
M.E -
mv² = mgh
Multiply both sides of the expression by 
( M.E -
mv² ) x
=
x mgh
h = ( M.E -
mv² ) x 
Learn more:
Kinetic energy brainly.com/question/6536722
#learnwithBrainly
The mass of an object always stays the same since it is really just the amount of matter in an object so no matter the force applied, as long as the object does not lose or gain matter, the object stays the same
Work is equal to distance times time so no work
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
Answer:
The back end of the vessel will pass the pier at 4.83 m/s
Explanation:
This is purely a kinetics question (assuming we're ignoring drag and other forces) so the weight of the boat doesn't matter. We're given:
Δd = 315.5 m
vi = 2.10 m/s
a = 0.03 m/s^2
vf = ?
The kinetics equation that incorporates all these variables is:
vf^2 = vi^2 + 2aΔd
vf = √(2.1^2 + 2(0.03)(315.5))
vf = 4.83 m/s