Are the lines horizontal, diagonal or vertical
Remember, SF= new/old. On shape 2, the side with the length 3 corresponds to the length of 9 on shape 1. (SF=3/9)=0.3333333....
Answer:
The answer for thue would happened to be 2
-1.
Answer:
<em>The second figure ( rectangle ) has a longer length of it's diagonal comparative to the first figure ( square )</em>
Step-by-step explanation:
We can't confirm the length of these diagonals based on the appearance of the figure, so let us apply Pythagorean Theorem;
This diagonal divides each figure ( square + rectangle ) into two congruent, right angle triangles ⇒ from which we may apply Pythagorean Theorem, where the diagonal acts as the hypotenuse;
5^2 + 5^2 = x^2 ⇒ x is the length of the diagonal,
25 + 25 = x^2,
x^2 = 50,
x = √50
Now the same procedure can be applied to this other quadrilateral;
3^2 + 7^2 = x^2 ⇒ x is the length of the diagonal,
9 + 49 = x^2,
x^2 = 58,
x = √58
<em>Therefore the second figure ( rectangle ) has a longer length of it's diagonal comparative to the first figure ( square )</em>
Answer:
Yes
Step-by-step explanation:
You can conclude that ΔGHI is congruent to ΔKJI, because you can see/interpret that there all the angles are congruent with one another, like with vertical angles (∠GIH and ∠KIJ) and alternate interior angles (∠H and ∠J, ∠G and ∠K).
We also know that we have two congruent sides, since it provides the information that line GK bisects line HJ, meaning that they have been split evenly (they have been split, with even/same lengths).
<u><em>So now we have three congruent angles, and two congruent sides. This is enough to prove that ΔGHI is congruent to ΔKJI,</em></u>
<u><em /></u>