Answer:
1s2 2s2 2p6 3s2 3p6 4s2 3d5
Explanation:
According to the Aufbau principle, electrons are filled in orbitals in order of increasing energy. The energy of orbitals in the electronic configuration of manganese increases from left to right, hence 3d orbital is much greater in energy than a 3p orbital.
The arrangement of orbitals in order of increasing energy is shown in the answer above.
Using PV=nRT or the ideal gas equation, we substitute n= 15.0 moles of gas, V= 3.00L, R equal to 0.0821 L atm/ mol K and T= 296.55 K and get P equal to 121.73 atm. The Van der waals equation is (P + n^2a/V^2)*(V-nb) = nRT. Substituting a=2.300L2⋅atm/mol2 and b=0.0430 L/mol, P is equal to 97.57 atm. The difference is <span>121.73 atm- 97.57 atm equal to 24.16 atm.</span>
Answer:
Nitrogen
Explanation:
Nitrogen has 5 Valence Electrons.
And its atomic mass is also less than Bismuth.
There are other elements in the 5th row but this one has the lowest atomic mass compared to the others.
Answer:
[MgSO₄] = 890 mM/L
Explanation:
In order to determine molarity we need to determine the moles of solute that are in 1L of solution.
Solute: MgSO₄ (10.7 g)
Solvent: water
Solution: 100 mL as volume. (100 mL . 1L / 1000mL) = 0.1L
We convert the solute's mass to moles → 10.7 g / 120.36 g/mol = 0.089 moles
Molarity (mol/L) → 0.089 mol/0.1L = 0.89 M
In order to calculate M to mM/L, we make this conversion:
0.89 mol . 1000 mmoles/ 1 mol = 890 mmoles