1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
3 years ago
7

Plss help me with this :(​

Mathematics
1 answer:
Andru [333]3 years ago
5 0

Answer:

(k) cos(θ)·√(1 + cot²θ) = √(cosec²θ - 1)

From trigonometric identities, we have;

1 + cot²θ = cosec²θ

On the Left Hand Side of the equation, we get;

cos(θ)·√(1 + cot²θ) = cos(θ) × cosec(θ) = cot(θ)

On the Right Hand Side of the equation, we have;

√(cosec²(θ) - 1) = √(1 + cot²(θ) - 1) = √(cot²(θ)) = cot(θ)

∴ √(cosec²θ - 1) = cot(θ)

By transitive property of equality, therefore;

cos(θ)·√(1 + cot²θ) = √(cosec²θ - 1)

(l) sin⁶A + cos⁶A = 1 - 3·sin²A·cos²A

sin⁶A + cos⁶A = (sin²A)³ + (cos²A)³

(sin²A)³ + (cos²A)³ = ((sin²A) + (cos²A))³ - 3·((sin²A)·(cos²A))·((sin²A) + (cos²A))

∴ (sin²A)³ + (cos²A)³ = (1)³ - 3·((sin²A)·(cos²A))·(1) = 1 - 3·((sin²A)·(cos²A))

sin⁶A + cos⁶A = (sin²A)³ + (cos²A)³ = 1 - 3·((sin²A)·(cos²A))

sin⁶A + cos⁶A = 1 - 3·((sin²A)·(cos²A))

(m) (sinA - cosecA)² + (cosA - secA)² = cot²A + tan²A - 1

(sinA - cosecA)²  = sin²A - 2×sinA×cosecA + cosec²A = sin²A - 2 + cosec²A

(cosA - secA)² = cos²A - 2×cosA×secA + sec²A = cos²A - 2 + sec²A

∴ (sinA - cosecA)² + (cosA - secA)² = sin²A - 2 + cosec²A + cos²A - 2 + sec²A

Where;

sin²A - 2 + cosec²A + cos²A - 2 + sec²A = sin²A + cos²A  - 2  - 2 + cosec²A + sec²A

sin²A + cos²A  - 2  - 2 + cosec²A + sec²A = 1 - 4 + cosec²A + sec²A

1 - 4 + cosec²A + sec²A = cosec²A + sec²A - 3

Where;

cosec²A = cot²A + 1

sec²A = tan²A + 1

∴ cosec²A + sec²A - 3 = cot²A + 1 + tan²A + 1 - 3 = cot²A + tan²A - 1 = The Right Hand Side of the equation

∴ (sinA - cosecA)² + (cosA - secA)² = cot²A + tan²A - 1

(n) \sqrt{1 - 2\cdot siaA\cdot cosA} = sinA - cosA

Squaring the Right Hand Side of the equation, we get;

(sinA - cosA)² = sin²A -2·sinA·cosA + cos²A = sin²A + cos²A -2·sinA·cosA

sin²A + cos²A -2·sinA·cosA = 1 - 2·sinA·cosA

∴ (sinA - cosA)² =  1 - 2·sinA·cosA

Taking the square root of both sides gives;

√((sinA - cosA)²) = \sqrt{1 - 2\cdot siaA\cdot cosA}

∴ sinA - cosA = \sqrt{1 - 2\cdot siaA\cdot cosA}

By symmetric property of equality, we have;

\sqrt{1 - 2\cdot siaA\cdot cosA} = sinA - cosA

Step-by-step explanation:

You might be interested in
How is a square related to a rhombus
Eduardwww [97]

Answer:

A Rhombus is basically a square turned diagonally my dude

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Factorise-              6y-15y^2<br>     HELP
Citrus2011 [14]
We will take the common terms in the expressions-

Here in the expression, 3y is a common term.
So,

6y - 15y^{2}

3y(2 - 5y)

So, the answer is 3y(2 -5y)
7 0
4 years ago
Read 2 more answers
EP6. Abby works at a job that starts out paying $15 per hour. Each year she continues
Artemon [7]

Answer:

$64.83.

Step-by-step explanation:

Each year the multiplier fffor her new rate will be 1.05.

So after 30 years her hourly rate will be  15 * 1.05^30

= $64.83

6 0
2 years ago
The function f(x) = x2 - 4x + 5 is shown on the graph.
Xelga [282]

Answer:

4. The range of the function is all

real numbers less than or equal to 9.

3 0
3 years ago
Find the value of n .<br> 6/n = 24/28<br> y = ___.
il63 [147K]

Answer:

n=7

Step-by-step explanation:

Cross multiply, isolate the variable, and divide by the coefficient to solve.

\frac{6}{n}=\frac{24}{28} \\ \\ 24n=168 \\ \\ n=7

Plug back in to check.

\frac{6}{7}=0.857142857 \\ \\ \frac{24}{28} =0.857142857

5 0
4 years ago
Other questions:
  • 100 POINTS!!!!!! MAY SOMEONE PLEASE HELP ME!!!! I NEED IT BAD!<br> THANK YOU IN ADVANCE!
    9·1 answer
  • If the first equation is multiplied by 3 and then the equations are added, the result is _____.
    7·1 answer
  • (d)find the hcf of 21 and 84​
    7·2 answers
  • Find the value b-7 when b=20
    12·2 answers
  • 3. Owen’s parents were planning a big birthday party for him. (a) His parents spent $2.49 on each of 6 goodie bags. How much did
    8·1 answer
  • Solve the equation. 20 = –d + 16<br><br> A. 4<br><br> B. –10<br><br> C. –6<br><br> D. –4
    9·1 answer
  • I need help marking brainliest
    14·2 answers
  • Tan theta is equal to 2- cos theta find the value of sin theta​
    5·1 answer
  • Acceleration of a runner who goes from 1.4 m/s to 2.2 m/s in 4 s
    13·1 answer
  • A zookeeper took a random sample of 30 days and observed how much food an elephant ate on each of those days. The sample mean wa
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!