Answer:
the slope of both lines are the same.
Step-by-step explanation:
Given the following segment of the Quadrilateral EFGH on a coordinate Segment FG is on the line 3x − y = −2,
segment EH is on the 3x − y = −6.
To determine their relationship, we can find the slope of the lines
For line FG: 3x - y = -2
Rewrite in standard form y = mx+c
-y = -3x - 2
Multiply through by-1
y = 3x + 2
Compare
mx = 3x
m = 3
The slope of the line segment FG is 3
For line EH: 3x - y = -6
Rewrite in standard form y = mx+c
-y = -3x - 6
Multiply through by-1
y = 3x + 6
Compare
mx = 3x
m = 3
The slope of the line segment EH is 3
Hence the statement that proves their relationship is that the slope of both lines are the same.
Answer:
5
Step-by-step explanation:
Answer:
c
Step-by-step explanation:
sorry if wrong
Quartic is 4th degree
the factors of an equation with roots r1,r2 is
(x-r1)(x-r2)
4th degree
it could be
(x-r1)¹(x-r2)³ or
(x-r1)²(x-r2)² or
(x-r1)³(x-r2)¹
roots or zeroes at x=-1 and x=-2
(x-(-1)) and (x-(-2))
(x+1) and (x+2)
the function could be factored into
(x+1)¹(x+2)³ or
(x+1)²(x+2)² or
(x+1)³(x+2)¹
expanded would be
x⁴+7x³+18x²+20x+9 or
x⁴+6x³+13x²+12x+4 or
x⁴+5x³+9x²+7x+2
one of those is the answer
Answer:
your total is..
Step-by-step explanation:
$14.3 you just gotta add em all together!