Answer:
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Keq= [Mg3P2]/[Mg]^3 [P]^2
Explanation:
The equation for the formation of magnesium phosphide from its elements is;
3Mg(s) +2P(s) -------> Mg3P2(s) + energy
Hence we can see that three moles of magnesium atoms combines with two moles of phosphorus atoms to yield one mole of magnesium phosphide. The equation written above is the balanced chemical reaction equation for the formation of the magnesium phosphide.
The equilibrium expression for the reaction K(eq) will be given by;
Keq= [Mg3P2]/[Mg]^3 [P]^2
Answer:
Different compounds react with oxygen differently – some contain lots of heat energy while others produce a smaller amount. The reaction with the oxygen may happen very quickly or more slowly. Amount: The amount of fuel available to burn is known as the fuel load.
Explanation:
Answer:
structure of a muscle cell
Answer:
<h2>1.264 × 10²⁴ molecules</h2>
Explanation:
The number of molecules can be found by using the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 2.10 × 6.02 × 10²³
We have the final answer as
<h3>1.264 × 10²⁴ molecules</h3>
Hope this helps you