The theoretical yield of urea : = 227.4 kg
<h3>Further explanation</h3>
Given
Reaction
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
128.9 kg of ammonia
211.4 kg of carbon dioxide
166.3 kg of urea.
Required
The theoretical yield of urea
Solution
mol Ammonia (MW=17 g/mol)
=128.9 : 17
= 7.58 kmol
mol CO₂(MW=44 g/mol) :
= 211.4 : 44
= 4.805 kmol
Mol : coefficient of reactant , NH₃ : CO₂ :
= 7.58/2 : 4.805/1
=3.79 : 4.805
Ammonia as limiting reactant(smaller ratio)
Mol urea based on mol Ammonia :
=1/2 x 7.58
=3.79 kmol
Mass urea :
=3.79 kmol x 60 g/mol
= 227.4 kg
Answer:
Q14: 17,140 g = 17.14 kg.
Q16: 504 J.
Explanation:
<u><em>Q14:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = 3600 x 10³ J).
m is the mass of the ice (m = ??? g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 100.0°C - 0.0°C = 100.0°C).
∵ Q = m.c.ΔT
∴ (3600 x 10³ J) = m.(2.1 J/g.°C).(100.0°C)
∴ m = (3600 x 10³ J)/(2.1 J/g.°C).(100.0°C) = 17,140 g = 17.14 kg.
<u><em>Q16:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 12.0 g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 0.0°C - (-20.0°C) = 20.0°C).
∴ Q = m.c.ΔT = (12.0 g)(2.1 J/g.°C)(20.0°C) = 504 J.
.Thermal energy, an extensive property, depends on the number of particles in a substance as well as the amount of energy each particle has. If either the number of particles or the amount of energy in each particle changes, the thermal energy of the sample changes. With identi- cally sized samples, the warmer substance has the greater ther- mal energy. hope that helps.
Maximum number of covalent bonds that an oxygen atom can make with hydrogen is 2.
- the ground state electronic configuration of oxygen is 2s² 2p⁴ that means it has 6 electrons in its valence shell and require two electrons are required to complete its octate.
- Two bonds are created when an electron donor atom shares the two needed electrons with oxygen. The ability of two oxygen atoms to share valence electrons results in the creation of a double bond between the two atoms.
- There are no longer any empty orbitals in the octet of oxygen after it is complete. As a result, it is unable to accept more electrons or create more bonds.
Therefore, Oxygen can only generate two bonds because it needs two additional electrons to complete its octet, after which it will run out of empty orbitals in which to receive additional electrons and create additional bonds.
learn more about octate here:
https://brainly.in/question/24161245
#SPJ4
Answer:
1.004×10²²
Explanation:
The molar mass of carbon is 12 g/mol
which means that:
<u>1 mole of carbon atoms has a mass of 12 grams.</u>
Since, diamond is a allotrope of carbon.
Mass of 1.00-carat diamond in grams is:
1.00 carat = 0.200 g
<u>
Since, 1 mole of C contains 6.022×10²³ atoms of C</u>
So,
12 grams contains 6.022×10²³ atoms of C
1 gram contains 6.022×10²³/ 12 atoms of C
0.200 gram contains (6.022×10²³/ 12)×0.200 atoms of C
Thus,
<u>1 carat diamond contains 1.004×10²² atoms of C.</u>