Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>
Volume= length•width•height
V=5•7•3
V= 105cm^3
Answer : The molecular weight of this compound is 891.10 g/mol
Explanation : Given,
Mass of compound = 12.70 g
Mass of ethanol = 216.5 g
Formula used :

where,
= change in freezing point
= temperature of pure ethanol = 
= temperature of solution = 
= freezing point constant of ethanol = 
i = van't hoff factor = 1 (for non-electrolyte)
m = molality
Now put all the given values in this formula, we get


Therefore, the molecular weight of this compound is 891.10 g/mol
C. Of the products is equal to the reactants.
Good luck out there! :)
The balanced equation is
4Fe+3O₂⇒2Fe₂O₃
We know that the mole of Fe₂O₃ is 6, and since the ratio between oxygen and <span>Fe₂O₃ is 3:2, we can see that
3:2 = x:6 (3 oxygen moles can make 2 </span>Fe₂O₃ moles = x oxygen moles can make 6 <span>Fe₂O₃ moles)
</span><span>
Multiply outside and inside (3*6 , 2*x) and put them on opposing sides of the equation
2*x = 3*6
2x=18
x=9
Therefore 9 moles of oxygen is needed.
</span>