1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8_murik_8 [283]
2 years ago
5

HELP PLSSS I HAVE AN EXAM MONDAY AND I THINK THIS IS GONNA BE ON ITTTT

Physics
1 answer:
il63 [147K]2 years ago
7 0
<h2>Answer:</h2>

(a) 3.2 x 10²s

(b) 0.9 m/s (S 13 E)

(c) 2.9 x 10²m

<h2>Explanation:</h2>

The sketch illustrating the scenario has been attached to this response.

As shown;

The fish swims due east with a velocity V_{x} = 0.2m/s

The river current has a velocity V_{y} due South = 0.9m/s

The resultant of the velocity is V

The width of the river is x = 64m

(a) To calculate how long it took the fish to get across the river, we know that velocity is the rate of change in distance, therefore we can use the relation;

V = \frac{d}{t}      -------------(i)

Where;

V = velocity of the fish = V_{x} = 0.2m/s

d = distance from the start to the end = width of the river = x = 64m

t = time taken to move for that distance

Make t subject of the formula in equation (i);

t = \frac{d}{V}

Substitute the values of d and V into the equation;

t = \frac{64m}{0.2m/s}

t = 320 s

t = 3.20 x 10²s

Therefore, the time taken for the fish to get across the river is 3.20 x 10²s

(b) The resulting vector of the fish is V whose magnitude is the algebraic sum of vectors  V_{x} and  V_{y}, and direction is given by θ. i.e

<em>The magnitude of the resulting vector is;</em>

|V| = \sqrt{(V_x)^2 + (V_y)^2}

|V| = \sqrt{(0.2)^2 + (0.9)^2}

|V| = \sqrt{(0.04) + (0.81)}

|V| = \sqrt{(0.85)}

|V| = 0.92m/s

|V| ≅ 0.9m/s

<em>The direction of the resulting vector θ and is given by;</em>

tan θ = \frac{V_y}{V_x}

tan θ = \frac{0.9}{0.2}

tan θ = 4.5

θ = tan⁻¹ ( 4.5)

θ = 77.47° South of East.

θ  ≈ 77.5° South of East.

Subtracting θ = 77.5° from 90° gives its value East of South

i.e

90 - 77.5 = 12.5° East of South

<em>This can also be written as S12.5°E</em>

<em>Approximating to the nearest whole number gives </em>S 13 E

Therefore, the resulting velocity of the fish is 0.9m/s in the direction S13°E

(c) When the fish arrives on the opposite bank, its distance from being at the point directly across from where it started is the product of the velocity of the river current and the time taken by the fish to get across the river. This point is equivalent to k as shown in the diagram.

Therefore;

distance = velocity of river current x time taken

distance = 0.9m/s x 3.20 x 10²s

distance = 2.88 x 10²m

distance ≅ 2.9 x 10²m

<em>Notice that the velocity of the river current is used since that's the velocity of the fish on the y-axis.</em>

<em />

<em />

You might be interested in
What law states force is dependent on the mass and acceleration of an object
UNO [17]

Answer:

Newton's second law of motion

Explanation:

Newton's second law of motion can be stated  

The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.

in another form,

Force = mass * acceleration

5 0
3 years ago
Describe the astronomical achievement of Mesopotamia
Annette [7]
Beginning around 5,500 years ago, the Sumerians built cities along the rivers in Lower Mesopotamia, specialized, cooperated, and made many advances in technology. The wheel, plow, and writing (a system which we call cuneiform) are examples of their achievements.
3 0
2 years ago
Which section of the graph represents negative acceleration?
agasfer [191]
The area between the 10 and the 12.
8 0
3 years ago
Read 2 more answers
A small sphere with mass m is attached to a massless rod of length L that is pivoted at the top, forming a simple pendulum. The
USPshnik [31]

Answer:

a) see attached, a = g sin θ

b)

c)   v = √(2gL (1-cos θ))

Explanation:

In the attached we can see the forces on the sphere, which are the attention of the bar that is perpendicular to the movement and the weight of the sphere that is vertical at all times. To solve this problem, a reference system is created with one axis parallel to the bar and the other perpendicular to the rod, the weight of decomposing in this reference system and the linear acceleration is given by

          Wₓ = m a

          W sin θ = m a

          a = g sin θ

b) The diagram is the same, the only thing that changes is the angle that is less

                θ' = 9/2  θ

             

c) At this point the weight and the force of the bar are in the same line of action, so that at linear acceleration it is zero, even when the pendulum has velocity v, so it follows its path.

The easiest way to find linear speed is to use conservation of energy

Highest point

            Em₀ = mg h = mg L (1-cos tea)

Lowest point

          Emf = K = ½ m v²

          Em₀ = Emf

          g L (1-cos θ) = v² / 2

              v = √(2gL (1-cos θ))

4 0
3 years ago
Using the law of conservation of angular momentum, estimate how fast a collapsed stellar core would spin if its initial spin rat
Nataly_w [17]

Answer:

\omega_{f} = 1000000\,\frac{rev}{day}

Explanation:

The law of conservation of angular momentum states that angular momentum remains constant when there is no external moment or forces applied to the system. Let assume that star can be modelled as an sphere, then:

\frac{2}{5}\cdot M\cdot R_{o}^{2} \cdot \omega_{o} = \frac{2}{5}\cdot M\cdot R_{f}^{2} \cdot \omega_{f}

The final angular speed is:

\omega_{f} = \omega_{o}\cdot (\frac{R_{o}}{R_{f}})^{2}

\omega_{f} = (1\,\frac{rev}{day} )\cdot (\frac{10000\,km}{10\,km} )^{2}

\omega_{f} = 1000000\,\frac{rev}{day}

3 0
2 years ago
Other questions:
  • A 60 kg bicyclist going 2 m/s increased his work output by 1,800 J. What was his final velocity?
    7·2 answers
  • PLEASE ANSWER 14-25 ASAP<br> Thanks
    9·1 answer
  • What are the possible units for a spring constant
    10·2 answers
  • Identify the action and reaction forces in the following situations: a) Earth attracts the Moon, b) a boy kicks a football, c) a
    15·1 answer
  • Review the Four Social Errors and Biases in the Highlights area on page 127 in Ch. 4 of THiNK: Critical Thinking and Logic Skill
    7·1 answer
  • A rock is thrown vertically upward from some height above the ground. It rises to some maximum height and falls back to the grou
    6·1 answer
  • As the velocity of the sound source approaches the speed of sound, the wave fronts ahead of the object begin to appear as:
    5·1 answer
  • which two developments are most likely to occur if nonrenewable resources such as fossil fuels are no longer extracted from eart
    11·1 answer
  • The fact that desert sand is very hot in the day and very cold at night is evidence that sand has
    7·2 answers
  • How do you find the voltage of a section of a parallel circuit?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!