ANSWER
Velocity of the mass reaches zero
EXPLANATION
We want to identify what hapens to a mass attached toa a spring at maximum displacement.
When a mass attached to a spring is at its maximum position of displacement, the direction of the mass begins to change. This implies that the velocity of the mass will reach zero.
Hence, at maximum displacement, the velocity of the mass reaches zero.
Answer:
Vx= 11.0865(m/s)
Vy= 6.4008(m/s)
Explanation:
Taking into account that 1m is equal to 0.3048 ft, the takeoff speed in m / s will be:
V= 42(ft/s) × 0.3048(m/ft) = 12.8016(m/s)
The take-off angle is equal to 30 °, taking into account the Pythagorean theorem the velocity on the X axis will be:
Vx= 12.8016 (m/s) × cos(30°)= 11.0865(m/s)
And for the same theorem the speed on the Y axis will be:
Vy= 12.8016 (m/s) × sen(30°)= 6.4008(m/s)
Acceleration occurs when there is a change in speed or direction. If it travels in a straight line, there is no speed or change in direction as it is constant througout, hence 0 acceleration.
hope this helps!! ✨
Answer:
30N*s
Explanation:
Given the following data;
Force = 10N
Time = 3 seconds
To find the impulse;
Impulse = force * time
Substituting into the equation, we have;
Impulse = 10 * 3
Impulse = 30Ns