<span>Density is 3.4x10^18 kg/m^3
Dime weighs 1.5x10^12 pounds
The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so
4/3 pi 1.9x10^3
= 4/3 pi 6.859x10^3 m^3
= 2.873x10^10 m^3
Now divide the mass by the volume
9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3
Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3
Now to figure out how much the dime weighs, just multiply by the volume of the dime.
3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg
And to convert from kg to lbs, multiply by 2.20462, so
6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb</span>
2130 cal is how much is released qhen 30 g of water at
I don't think the shaping of the beach or hill would be considered
weathering, especially since it says "as smaller particles are moved
away". This one is just talking about where the particles decide to
gather and make a shape.
'C' is really talking about weathering, where rocks are broken up into
stones, and the stones into smaller pieces that can be blown away
on the wind. THAT's weathering.
To solve this problem we will apply the momentum conservation theorem, that is, the initial momentum of the bodies must be the same final momentum of the bodies. The value that will be obtained will be a vector value of the final speed of which the magnitude will be found later. Our values are given as,




Using conservation of momentum,


Solving for 

Using the properties of vectors to find the magnitude we have,


Therefore the magnitude of the velocity of the wreckage of the two cars immediately after the collision is 12.4135m/s
Answer:
weight of tock would change