1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
3 years ago
10

Charges of 4.0 μC and −6.0 μC are placed at two corners of an equilateral triangle with sides of 0.10 m. What is the magnitude o

f the electric field created by these two charges at the third corner of the triangle?
Physics
1 answer:
jek_recluse [69]3 years ago
8 0

Answer:

4.763 × 10⁶ N/C

Explanation:

Let E₁ be the electric field due to the 4.0 μC charge and E₂ be the electric field due to the -6.0 μC charge. At the third corner, E₁ points in the negative x direction and E₂ acts at an angle of 60 to the negative x - direction.

Resolving E₂ into horizontal and vertical components, we have

E₂cos60 as horizontal component and E₂sin60 as vertical component. E₁ has only horizontal component.

Summing the horizontal components we have

E₃ = -E₁ + (-E₂cos60) = -kq₁/r²- kq₂cos60/r²

= -k/r²(q₁ + q₂cos60)

= -k/r²(4 μC + (-6.0 μC)(1/2))

= -k/r²(4 μC - 3.0 μC)

= -k/r²(1 μC)

= -9 × 10⁹ Nm²/C²(1.0 × 10⁻⁶)/(0.10 m)²

=  -9 × 10⁵ N/C

Summing the vertical components, we have

E₄ = 0 + (-E₂sin60)

= -E₂sin60

= -kq₂sin60/r²

= -k(-6.0 μC)(0.8660)/(0.10 m)²

= -9 × 10⁹ Nm²/C²(-6.0 × 10⁻⁶)(0.8660)/(0.10 m)²

= 46.77 × 10⁵ N/C

The magnitude of the resultant electric field, E is thus

E = √(E₃² + E₄²) = √[(-9 × 10⁵ N/C)² + (46.77 10⁵ N/C)²) = (√226843.29) × 10⁴

= 476.28  × 10⁴ N/C

= 4.7628 × 10⁶ N/C

≅ 4.763 × 10⁶ N/C

You might be interested in
The greater the difference in electronegativity between two covalently bonded<br><br> atoms
katrin [286]

Answer:

The greater the difference in electronegativity between two covalently bonded atoms, the greater the bond's percentage of ionic character.

Explanation:

Bond polarity (i.e the separation of electric charge along a bond) and ionic character (amount of electron sharing) increase with an increasing difference in electronegativity.

Therefore, we can say that, the greater the difference in electronegativity between two covalently bonded atoms, the greater the bond's percentage of ionic character.

7 0
3 years ago
Ngan has a weight of 314.5 N on Mars and a weight 833.0 N on Earth. What is Ngan's mass on Earth?
mr_godi [17]

Ngan's mass on earth is 85kg.

Ngan has a weight on Mars = 14.5 N

Ngan’s weight on Earth = 833.0 N

Ngan’s mass on Earth = ?

<span>Fg,earth = mg(earth)</span>

<span>M = Fg,earth </span><span>/ g(earth)</span>

<span>M = 833.0 N / 9.8 m/s2</span>

<span>M = 85 kg</span>

4 0
3 years ago
Read 2 more answers
An airplane is traveling due east with a velocity of 7.5 × 102 kilometers/hour. There is a tailwind of 30 kilometers/hour. What
Delvig [45]
A tailwind means you add thed velocity of the tailwind to the velovity of the plane (no need for any vectors etc. so you just need (7.5x 102 ) +30 then convert it so it like one of the answers (btw - none of the answers is exactly correct - you need to round to get it) thats what you need to do to get the question
4 0
3 years ago
Read 2 more answers
An object with mass 100 kg moved in outer space. When it was at location &lt;8, -30, -4&gt; its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
3 years ago
Calculate the energy in the form of heat (in kJ) required to change 75.0 g of liquid water at 27.0 °C to ice at –20.0 °C. Assume
REY [17]

Explanation:

The given data is as follows.

          mass, m = 75 g

      T_{1} = 0^{o}C

      T_{2} = 27^{o}C

      Specific heat of water = 4.18

First, we will calculate the heat required for water is as follows.

            q = m C \times (T_{1} - T_{2})

               = 75 g \times 4.18 J/g^{o}C \times (0 - 27)^{o}C

               = 8464.5 J/mol

               = 8.46 kJ ......... (1)

Also, it is given that T_{3} = -20^{o}C = (20 + 273) K = 293 K and specific heat of ice is 2.108 kJ/kg K.

Now, we will calculate the heat of fusion as follows.

        q = mC \times (T_{3} - T_{1})

           = 0.075 kg \times 2.108 kJ/kg K \times (-293 - 0) K

           = -46.32 kJ ......... (2)

Now, adding both equations (1) and (2) as follows.

               8.46 kJ - 46.32 kJ

             = -37.86 kJ

Therefore, we can conclude that energy in the form of heat (in kJ) required to change 75.0 g of liquid water at 27.0^{o}C to ice at -20.0^{o}C is -37.86 kJ.

4 0
3 years ago
Other questions:
  • The object distance for a concave lens is 8.0 cm, and the image distance is 12.0 cm. The height of the object is 4.0 cm. What is
    5·2 answers
  • According to the scientific method, how would you test a hypothesis?
    13·1 answer
  • What would happen if you were to put both hands in the water with an electric eel?
    6·2 answers
  • Products in which titanium is used
    13·2 answers
  • What is the Electron Geometry of a AB4 molecule? A. bent B. trigonal planar C. linear D. tetrahedral
    8·1 answer
  • A basketball player jumps 76cm to get a rebound. How much time does he spend in the top 15cm of the jump (ascent and descent)?
    5·1 answer
  • Which vessels have a tunica media with relatively more smooth muscle than elastic tissue, and an elastic membrane on each face o
    14·1 answer
  • An oxygen atom picks up two additional, free floating electrons. Is the charge of the newly formed oxygen ion positive, negative
    5·2 answers
  • How many justified by Bohr model?
    15·1 answer
  • We are in an elevator going down at constant speed. All these forces are acting on us, except:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!