To determine the height of the object given the time, we simply use the given relation between height and time in the problem statement. It is given as:
h = -16t^2 + 127t
We substitute 55 seconds to t and obtain,
h = -16(55)^2 + 127(55)
h = - 41415
The answer is B. desert. Deserts don't get much rainfall to begin with and most of it evaporates.
I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.
<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know
V and
I use formula
P = IV: P = IV = (100mA)(10V) = 1 W.</span>
The next question is what I'm not sure about:
Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).
What I did initially was: P = IV = (100mA)(2V) = 2 W
But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."
So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.
P = IV = (200mA)(2V) = 4 W
Hi there!
Recall the equation for centripetal force:

We can rearrange the equation to solve for 'r'.
Multiply both sides by r:

Divide both sides by Fc:
