1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
3 years ago
10

Charges of 4.0 μC and −6.0 μC are placed at two corners of an equilateral triangle with sides of 0.10 m. What is the magnitude o

f the electric field created by these two charges at the third corner of the triangle?
Physics
1 answer:
jek_recluse [69]3 years ago
8 0

Answer:

4.763 × 10⁶ N/C

Explanation:

Let E₁ be the electric field due to the 4.0 μC charge and E₂ be the electric field due to the -6.0 μC charge. At the third corner, E₁ points in the negative x direction and E₂ acts at an angle of 60 to the negative x - direction.

Resolving E₂ into horizontal and vertical components, we have

E₂cos60 as horizontal component and E₂sin60 as vertical component. E₁ has only horizontal component.

Summing the horizontal components we have

E₃ = -E₁ + (-E₂cos60) = -kq₁/r²- kq₂cos60/r²

= -k/r²(q₁ + q₂cos60)

= -k/r²(4 μC + (-6.0 μC)(1/2))

= -k/r²(4 μC - 3.0 μC)

= -k/r²(1 μC)

= -9 × 10⁹ Nm²/C²(1.0 × 10⁻⁶)/(0.10 m)²

=  -9 × 10⁵ N/C

Summing the vertical components, we have

E₄ = 0 + (-E₂sin60)

= -E₂sin60

= -kq₂sin60/r²

= -k(-6.0 μC)(0.8660)/(0.10 m)²

= -9 × 10⁹ Nm²/C²(-6.0 × 10⁻⁶)(0.8660)/(0.10 m)²

= 46.77 × 10⁵ N/C

The magnitude of the resultant electric field, E is thus

E = √(E₃² + E₄²) = √[(-9 × 10⁵ N/C)² + (46.77 10⁵ N/C)²) = (√226843.29) × 10⁴

= 476.28  × 10⁴ N/C

= 4.7628 × 10⁶ N/C

≅ 4.763 × 10⁶ N/C

You might be interested in
If an object is projected upward with an initial velocity of 127 ft per? sec, its height h after t seconds is h equals negative
Stolb23 [73]
To determine the height of the object given the time, we simply use the given relation between height and time in the problem statement. It is given as:

h = -16t^2 + 127t

We substitute 55 seconds to t and obtain,

h = -16(55)^2 + 127(55)
h = - 41415
4 0
3 years ago
What happens when you decrease the thrust on your scooter? A. You stop B. Nothing happens C. You fall over D. You speed up Reset
mars1129 [50]

Answer:

D. You speed up

Explanation:

hope it helps

4 0
2 years ago
Which biome's yearly rainfall mainly evaporates? A. taiga B. desert C. tropical rainforest D. temperate grassland
worty [1.4K]
The answer is B. desert. Deserts don't get much rainfall to begin with and most of it evaporates.
7 0
3 years ago
When the voltage across a steady resistance is doubled, the current?
natima [27]

I'm actually going ahead in the book (DC Circuits) so this isn't really homework but I figured the tag was appropriate....the name of the chapter is Ohm's Law and Watt's Law.

<span>Problem: Calculate the power dissipated in the load resistor, R, for each of the circuits.Circuit (a): V = 10V; I = 100mA; R = ?; Since I know V and I use formula P = IV: P = IV = (100mA)(10V) = 1 W.</span>

The next question is what I'm not sure about:

Question: What is the power in the circuit (a) above if the voltage is doubled? (Hint: Consider the effect on current).

What I did initially was: P = IV = (100mA)(2V) = 2 W

But then I looked at the answer and it said 4 W, then I looked at the Hint again. Then I remembered in the book early on it said "If the voltage increases across a resistor, current will increase."

So question is: When solving problems I have to increase (or decrease) current (I) every time voltage (V) is increased (decreased) in a problem, right? How about the other way around, when increasing current (I), you need to increase voltage (V). I'm pretty sure that's how they got 4 W, but want to make sure before I head to the next section of the book.

P = IV = (200mA)(2V) = 4 W

8 0
3 years ago
An object of mass m is traveling in a circle with centripetal force Fc. If the velocity of the object is v, what is the radius o
borishaifa [10]

Hi there!

Recall the equation for centripetal force:
F_c = \frac{mv^2}{r}

We can rearrange the equation to solve for 'r'.

Multiply both sides by r:
r * F_c = mv^2

Divide both sides by Fc:
\boxed{ r= \frac{mv^2}{F_c}}

7 0
2 years ago
Other questions:
  • How do you read a topographic map?
    9·2 answers
  • How many electrons are in the outer energy level of group 17(7A) atoms?
    15·1 answer
  • Two vectors, in three dimensions, are given in Cartesian coordinates as :
    8·1 answer
  • In what form does carbon return to the atmosphere after it is released from the burning of fossil fuels
    6·1 answer
  • Explain why beaches can be considered both erosional and depositional. Remember to write in complete sentences!
    8·1 answer
  • .What is the relationship between the solar radius and the brightness of stars?
    7·1 answer
  • The Pacific Plate is moving 29 mm/year toward the north and 20 mm/year toward the west relative to the North American Plate. Sho
    5·1 answer
  • If a girl running along a straight road with a uniform velocity 1.5m/s,find her acceleration
    12·1 answer
  • Explain how a musical instrument such as a piano may be tuned by using the phenomenon of beats.
    13·1 answer
  • If the maximum energy given to an electron during compton scattering is 30 kev, what is the wavelength of the incident photon?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!