Answer:
a) the charge of an electron is equivalent to the magnitude of the elementary charge but barring a negative sign since the side of the elementary charge is roughly 1.602 * 10 - 19 Columbus then the charge of the electronic is-1.602 * 10 - 19
b) b=2T on the electron moving in the magnetic field
consider the motion of the tennis ball in downward direction
Y = vertical displacement = 400 m
a = acceleration = acceleration due to gravity = 9.8 m/s²
v₀ = initial velocity of the ball at the top of building = 10 m/s
v = final velocity of the ball when it hits the ground = ?
using the kinematics equation
v² = v²₀ + 2 a Y
inserting the values
v² = 10² + 2 (9.8) (400)
v = 89.11 m/s
Answer:
A. We have that radius r = 4.00m intensity I = 8.00 W/m^
total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W
b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2
c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J
1 ft²= 0.09290304m²
so:
43560ft²= 0.09290304m²×43560
= 4,046.8564224 m²
Answer:
354 m/s
Explanation:
For the second overtune (Third harmonic) of an open pipe,
λ = 2L/3................................ Equation 1
Where L = Length of the open pipe, λ = Wave length.
Given: L = 1.75 m.
Substitute into equation 1
λ = 2(1.75)/3
λ = 1.17 m.
From the question,
V = λf.......................... Equation 2
V = speed of sound in the room, f = frequency
Given: f = 303 Hz.
Substitute into equation 2
V = 1.17(303)
V = 353.5
V ≈ 354 m/s
Hence the right answer is 354 m/s