Answer:
f = 19,877 cm and P = 5D
Explanation:
This is a lens focal length exercise, which must be solved with the optical constructor equation
1 / f = 1 / p + 1 / q
where f is the focal length, p is the distance to the object and q is the distance to the image.
In this case the object is placed p = 25 cm from the eye, to be able to see it clearly the image must be at q = 97 cm from the eye
let's calculate
1 / f = 1/97 + 1/25
1 / f = 0.05
f = 19,877 cm
the power of a lens is defined by the inverse of the focal length in meters
P = 1 / f
P = 1 / 19,877 10-2
P = 5D
You use more significant figures. 5 sigfigs (1.0985) is more accurate than 2 sigfigs (1.0)
Explanation:
If the intensity of the yellow light increased, meaning more photons will strike the Potassium metal per unit area. This will cause more ejection of electrons from the metal and hence, the strength of current will also increase as we know that
I = Q/t, as the charge increase , the current will also increase.
Answer:
d = 69 .57 meter
Explanation:
First case
Speed of car ( v ) = 20.5 mi/h = 9.164 M/S
distance ( d ) = 11.6 meter ( m = mass of the car )
Work done = 0.5 m v² = 0.5 * 9.164² * m J = 41.99 m J
Force = ( workdone /distance ) = ( 41.99 m / 11.6 ) = 3.619 m N
Second case
v = 50.2 mi/h = 22.44135 m/s
d = ?
Work done = 0.5 * 22.44² * m J = 251.7768 * m J
Since the braking force remains the same .
3.619 m = ( 251.7768 m / d )
d = 69 .57 meter