Answer:
pH= 9.2
Explanation:
Henderson hasselbach equation
pKa= log Ka= log (4.9 x 10^-10)=9.3
![pH=Pka+log \frac{[A-]}{[HA]}](https://tex.z-dn.net/?f=pH%3DPka%2Blog%20%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D)
![pH=9.3+log \frac{[CN-]}{[HCN]}](https://tex.z-dn.net/?f=pH%3D9.3%2Blog%20%5Cfrac%7B%5BCN-%5D%7D%7B%5BHCN%5D%7D)
![pH=9.3+log \frac{[0.64 M]}{[0.83 M]}](https://tex.z-dn.net/?f=pH%3D9.3%2Blog%20%5Cfrac%7B%5B0.64%20M%5D%7D%7B%5B0.83%20M%5D%7D)
pH= 9.2
Answer: The molar mass of water in the hydrate is 126.14.
Explanation:
The average kinetic energy of 1 mole of a gas at -32 degrees Celsius is:
3.80 x 103 J
The relationship between volume and temperature of a gas, when pressure and moles of a gas are held constant, is: V*T = k.
FALSE
The relationship between moles and volume, when pressure and temperature of a gas are held constant, is: V/n = k. We could say then, that:
If the moles of gas are tripled, the volume must also triple.
If the temperature and volume of a gas are held constant, an increase in pressure would most likely be caused by an increase in the number of moles of gas.
TRUE
If the vapor pressure of a liquid is less than the atmospheric pressure, the liquid will not boil.
TRUE
35 - AB
36 - BD
33 - true
34 - False
20 - 6
21 - orthohombic
Answer : The number of moles of water will be, 1.235 moles
Solution : Given,
Mass of
= 42 grams
Molar mass of
= 34 g/mole
First we have to calculate the moles of 

Now we have to calculate the moles of water.
The balanced chemical reaction will be,

From the balanced reaction, we conclude that
As, 2 moles of
decomposes to give 2 moles of water
So, 1.235 moles of
decomposes to give 1.235 moles of water
Therefore, the number of moles of water will be, 1.235 moles