Answer:
ºC
Explanation:
We have to start with the variables of the problem:
Mass of water = 60 g
Mass of gold = 13.5 g
Initial temperature of water= 19 ºC
Final temperature of water= 20 ºC
<u>Initial temperature of gold= Unknow</u>
Final temperature of gold= 20 ºC
Specific heat of gold = 0.13J/gºC
Specific heat of water = 4.186 J/g°C
Now if we remember the <u>heat equation</u>:


We can relate these equations if we take into account that <u>all heat of gold is transfer to the water</u>, so:

Now we can <u>put the values into the equation</u>:

Now we can <u>solve for the initial temperature of gold</u>, so:

ºC
I hope it helps!
Answer:
The solution becomes diluted.
Explanation:
When you add water to a solution, the number of moles of the solvent stays the same while the volume increases. Therefore, the molarity decreases.
Hope this helps!
Protons cannot be lost without the atoms becoming an entirely different element. Elements can infact have different numbers of neutrons within the same element, but neutrons are not related to the electrical charge. The answer is c. electrons.
I believe they’re both true.
Answer:
no no no who are these some look good but are black what is this