Answer:
4.4 mol.
Explanation:
Hello!
In this case, since the formula for calculating the molarity is:

Whereas n stands for moles and V for the volume in liters; we can solve for n as shown below when we are given the volume and the molarity:

Thus, we plug in the given data to obtain:

Best regards!
Answer:
See explanation
Explanation:
Let us recall that a negative ion is formed by addition of electrons to an atom. When electrons are added to the atom, greater interelectronic repulsion increases the size of the Te^2− hence it is greater in size than Te atom. Therefore, the ionic radius of Te^2− is greater than the atomic radius of Te.
In the second question, oxygen is positioned so far to the right because it has a far smaller nuclear charge compared to Te. Hence in the PES spectrum, the 1s sublevel of oxygen lies far to the right of that of Te.
The molecular element describes the amount of protons, neutrons, and electrons found in an atom
An atomic element is the subject in the formula such as ... sulfur, carbon, or oxygen
Answer:
A) pH of Buffer solution = 4.59
B) pH after 5.0 ml of 2.0 M NaOH have been added to 400 ml of the original buffer solution = 4.65
Explanation:
This is the Henderson-Hasselbalch Equation:
![pH = pKa + log\frac{[conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2B%20log%5Cfrac%7B%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
to calculate the pH of the following Buffer solutions.