Answer is: sulfuric acid is the limiting reactant.
Chemical reaction: 3H₂SO₄ + 2Al(OH)₃ → Al₂(SO₄)₃ + 6H₂O.
m(H₂SO₄) = 34 g.
n(H₂SO₄) = m(H₂SO₄) ÷ M(H₂SO₄).
n(H₂SO₄) = 34 g ÷ 98 g/mol.
n(H₂SO₄) = 0,346 mol.
m(Al(OH)₃) = 33 g.
n(Al(OH)₃) = 33 g ÷ 78 g/mol.
n(Al(OH)₃) = 0,423 mol.
From chemical reaction: n(H₂SO₄) : n(Al(OH)₃) = 3 : 2.
Answer:
F. 2NO + 02 —> 2NO
H. 4NH3 + 502 —> 4NO + 6H20
Explanation:
The law of conservation of mass states that matter can neither be created nor destroyed during a chemical reaction but can be convert from one form to another.
2NO + 02 —> 2NO
From the above, the total number of N on the left balance the total number on the right i.e 2 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 2 atoms of O on both side of the equation. This is certified by the law of conservation of mass.
4NH3 + 502 —> 4NO + 6H20
From the above, the total number of N on the left balance the total number on the right i.e 4 atoms of N on both side of the equation.
The total number of O on the left balance the total number on the right i.e 10 atoms of O on both side of the equation.
The total number of H on the left balance the total number on the right i.e 12 atoms of O on both side of the equation.
This is certified by the law of conservation of mass.
The rest equation did not conform to the law of conservation of mass as the atoms on the left side did not balance those on the right side
Answer:
T2 = 260 K
Explanation:
<em>Given data:</em>
P1 = 150.0 k Pa
T1 = (-23+ 273.15) K = 250.15 K
V1 = 1.75 L
P2 = 210.0 kPa
V2 = 1.30 L
<em>To find:</em>
T2 = ?
<em>Formula:</em>


<em>Calculation:</em>
T2 = (210.0 kPa) x (1.30 L) x (250.15 K) / (150.0 kPa) x (1.75 L)
T2 = 260 K
Nuclear fission is used enable to release energy in power plants. The constant collision of particles within the reactor, create most of the plants energy.
Answer:
<em>A not reasonable explanation for an aerospace engineer designs a rocket to have three stages is</em>:
- <u><em>A. To simplify the design of the rocket</em></u>
Explanation:
A <em>three stages rocket</em> permits to separate the fuel compartments. The rocket must be launched with a huge amount of fuel to last the entire travel. Then the initial mass of the rocket and the fuel is considerably large.
As the rocket flies, part of the fuel is consumed and so some compartements may be separated and removed decreasing the mass of the rocket as it flies (<em>option D. </em>is a reasonable explanation), so the rocket only carries the necessary mass (<em>statement B</em>. is a reasonable explanation).
As the rocket moves away from Earth, the gravitational force decreases and, in the space, the amount of thrust needed is lesser, which the aerospace engineers take into account for the design (choice C. is a reasonable explanation).
The only <em>not reasonable explanation to design a three stage rocket</em> is to <em>simplify the design of the rocket</em>: designing a rocket with three modules each with different features, functions, and the detachment mechanisms brings lot of complex problems to solve. So, o<em>ption A. </em>is the correct answer.