1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olya-2409 [2.1K]
3 years ago
7

Two 51 g blocks are held 30 cm above a table. As shown in the figure, one of them is just touching a 30-long spring. The blocks

are released at the same time. The block on the left hits the table at exactly the same instant as the block on the right first comes to an instantaneous rest. What is the spring constant?
Physics
1 answer:
vivado [14]3 years ago
6 0

The concept of this question can be well understood by listing out the parameters given.

  • The mass of the block = 51 g = 51 × 10⁻³ kg
  • The distance of the block from the table = 30 cm
  • Length of the spring = 30 cm

The purpose is to determine the spring constant.

Let us assume that the two blocks are Block A and Block B.

At point A on block A, the initial velocity on the block is zero

i.e. u = 0

We want to determine the time it requires for Block A to reach the table. The can be achieved by using the second equation of motion which can be expressed by using the formula.

\mathsf{S = ut + \dfrac{1}{2}gt^2}

From the above formula,

The distance (S) = 30 cm; we need to convert the unit to meter (m).

  • Since 1 cm = 0.01 m
  • Then, 30cm = 0.3 m

The acceleration (g) due to gravity = 9.8 m/s²

∴

inputting the values into the equation above, we have;

\mathsf{0.3 = (0)t + \dfrac{1}{2}*(9.80)*(t^2)}

\mathsf{0.3 = \dfrac{1}{2}*(9.80)*(t^2)}

\mathsf{0.3 =4.9*(t^2)}

By dividing both sides by 4.9, we have:

\mathsf{t^2 = \dfrac{0.3}{4.9}}

\mathsf{t^2 = 0.0612}

\mathsf{t = \sqrt{0.0612}}

\mathsf{t =0.247  \ seconds}

However, block B comes to an instantaneous rest on point C. This is achieved by the dropping of the block on the spring. During this process, the spring is compressed and it bounces back to oscillate in that manner. The required time needed to get to this point C is half the period, this will eventually lead to the bouncing back of the block with another half of the period, thereby completing a movement of one period.

By applying the equation of the time period of a simple harmonic motion.

\mathsf{T = 2 \pi \sqrt{\dfrac{m}{k}}}

where the relation between time (t) and period (T) is:

\mathsf{t = \dfrac{T}{2}}

T = 2t

T = 2(0.247)

T = 0.494 seconds

\mathsf{T = 2 \pi \sqrt{\dfrac{m}{k}}}

By making the spring constant k the subject of the formula:

\mathsf{\dfrac{T}{2 \pi } = \sqrt{ \dfrac{m}{k}}}

\Big(\dfrac{T}{2 \pi }\Big)^2 = { \dfrac{m}{k}

\dfrac{T^2}{(2 \pi)^2 }= { \dfrac{m}{k}

\mathsf{ T^2 *k = 2 \pi^2*m} \\ \\  \mathsf{  k = \dfrac{2 \pi^2*m}{T^2}}

\mathsf{  k =\Big( \dfrac{(2 \pi)^2*(51 \times 10^{-3})}{(0.494)^2} \Big) N/m}

\mathbf{  k =8.25 \ N/m}

Therefore, we conclude that the spring constant as a result of instantaneous rest caused by the compression of the spring is 8.25 N/m.

Learn more about simple harmonic motion here:

brainly.com/question/17315536?referrer=searchResults

You might be interested in
Give me the ans of this plsss​
MissTica

vib. motion motion of wire of guitar

circular motion revolution of earth around sun

1ml 1cm3

1m3 100cm3

volume of liquid measuring cylinder

5 0
3 years ago
The atoms in a solid move about freely
ivolga24 [154]

No, not exactly.  They jiggle and tremble and vibrate a lot, but
they always basically stay in very nearly the same place.

It's like if you're allowed to go anywhere you want in your jail cell,
you wouldn't exactly call that "moving about freely".

6 0
3 years ago
Stephanie serves a volleyball from a height of 0.80 m and gives it an initial velocity of +7.2 m/s straight up. how high will th
Papessa [141]
<span>3.78 m Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes. 7.2 m/s / 9.81 m/s^2 = 0.77945 s The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving d = 1/2 A T^2 d = 1/2 9.81 m/s^2 (0.77945 s)^2 d = 4.905 m/s^2 0.607542 s^2 d = 2.979995 m So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height. d = 2.979995 m + 0.8 m = 3.779995 m Rounding to 2 decimal places gives us 3.78 m</span>
7 0
3 years ago
The sport with the fastest moving ball is jai alai, where measured speeds can be 286 km/h. If a professional jai alai player fac
cricket20 [7]

Answer:

d= 794.4 cmExplanation:

Given that

Speed ,V= 286 km/h

=286\times \dfrac{1000}{3600}\ m/s

V=79.44 m/s

Given that time ,t= 100 ms

t= 0.1 s

We know that ( if acceleration is zero)

Distance = Speed x time

d= V t

Now by putting the values in the above equation

d = 79.44 x 0.1 m

d= 7.944 m

We know that 1 m = 100 cm

d= 794.4 cm

5 0
3 years ago
A man can jog 10 miles in 90 minutes. What’s his speed in mph?
Yuki888 [10]

Answer:

hi there!

the correct answer to this question is: 6.67 mph

Explanation:

you convert minutes to hours

10 miles * 60 mins / 90 mins

7 0
3 years ago
Other questions:
  • 10 POINT PLS HELP
    11·1 answer
  • A book with a mass of 1kg is dropped from a height of 3m . What is the potential energy of th book when it reaches the floor?​
    15·1 answer
  • Juan lives 100m away from bill whats juan`s average speed if he reaches bill home in 50 s
    10·1 answer
  • You have two photos of a person walking. One shows the person at the corner of Third and Main streets, the other shows the perso
    10·1 answer
  • A 2,000-kg test car, traveling 60 m/s hits a brick wall. Using motion pictures, the time involved is determined to be 0.050 s. W
    13·1 answer
  • Which type of radiation has the lowest penetrating ability?
    10·2 answers
  • What was Robert Boyle's most famous discovery about gases​?
    5·1 answer
  • Traveling in a circle requires a net force
    9·1 answer
  • A common, though incorrect, statement is, "The Moon orbits the Earth." That creates an image of the Moon?s orbit that looks like
    7·1 answer
  • PHYSICS PLEASE HELP
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!